Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    A Method for Detecting and Recognizing Yi Character Based on Deep Learning

    Haipeng Sun1,2, Xueyan Ding1,2,*, Jian Sun1,2, Hua Yu3, Jianxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2721-2739, 2024, DOI:10.32604/cmc.2024.046449 - 27 February 2024

    Abstract Aiming at the challenges associated with the absence of a labeled dataset for Yi characters and the complexity of Yi character detection and recognition, we present a deep learning-based approach for Yi character detection and recognition. In the detection stage, an improved Differentiable Binarization Network (DBNet) framework is introduced to detect Yi characters, in which the Omni-dimensional Dynamic Convolution (ODConv) is combined with the ResNet-18 feature extraction module to obtain multi-dimensional complementary features, thereby improving the accuracy of Yi character detection. Then, the feature pyramid network fusion module is used to further extract Yi character… More >

  • Open Access

    ARTICLE

    Modified Dragonfly Optimization with Machine Learning Based Arabic Text Recognition

    Badriyya B. Al-onazi1, Najm Alotaibi2, Jaber S. Alzahrani3, Hussain Alshahrani4, Mohamed Ahmed Elfaki4, Radwa Marzouk5, Mahmoud Othman6, Abdelwahed Motwakel7,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1537-1554, 2023, DOI:10.32604/cmc.2023.034196 - 30 August 2023

    Abstract Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes. When the number of labels is limited to one, the task becomes single-label text categorization. The Arabic texts include unstructured information also like English texts, and that is understandable for machine learning (ML) techniques, the text is changed and demonstrated by numerical value. In recent times, the dominant method for natural language processing (NLP) tasks is recurrent neural network (RNN), in general, long short term memory (LSTM) and convolutional neural network (CNN). Deep learning (DL) models… More >

  • Open Access

    ARTICLE

    Recognition of Handwritten Words from Digital Writing Pad Using MMU-SNet

    V. Jayanthi*, S. Thenmalar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3551-3564, 2023, DOI:10.32604/iasc.2023.036599 - 15 March 2023

    Abstract In this paper, Modified Multi-scale Segmentation Network (MMU-SNet) method is proposed for Tamil text recognition. Handwritten texts from digital writing pad notes are used for text recognition. Handwritten words recognition for texts written from digital writing pad through text file conversion are challenging due to stylus pressure, writing on glass frictionless surfaces, and being less skilled in short writing, alphabet size, style, carved symbols, and orientation angle variations. Stylus pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines, angles, curves, and bends.… More >

  • Open Access

    ARTICLE

    Embedded System Based Raspberry Pi 4 for Text Detection and Recognition

    Turki M. Alanazi*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3343-3354, 2023, DOI:10.32604/iasc.2023.036411 - 15 March 2023

    Abstract Detecting and recognizing text from natural scene images presents a challenge because the image quality depends on the conditions in which the image is captured, such as viewing angles, blurring, sensor noise, etc. However, in this paper, a prototype for text detection and recognition from natural scene images is proposed. This prototype is based on the Raspberry Pi 4 and the Universal Serial Bus (USB) camera and embedded our text detection and recognition model, which was developed using the Python language. Our model is based on the deep learning text detector model through the Efficient… More >

  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419 - 09 February 2023

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or… More >

  • Open Access

    ARTICLE

    An Efficient Text Recognition System from Complex Color Image for Helping the Visually Impaired Persons

    Ahmed Ben Atitallah1,*, Mohamed Amin Ben Atitallah2,3, Yahia Said4,5, Mohammed Albekairi1, Anis Boudabous6, Turki M. Alanazi1, Khaled Kaaniche1, Mohamed Atri7

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 701-717, 2023, DOI:10.32604/csse.2023.035871 - 20 January 2023

    Abstract The challenge faced by the visually impaired persons in their day-to-day lives is to interpret text from documents. In this context, to help these people, the objective of this work is to develop an efficient text recognition system that allows the isolation, the extraction, and the recognition of text in the case of documents having a textured background, a degraded aspect of colors, and of poor quality, and to synthesize it into speech. This system basically consists of three algorithms: a text localization and detection algorithm based on mathematical morphology method (MMM); a text extraction… More >

  • Open Access

    ARTICLE

    Visual News Ticker Surveillance Approach from Arabic Broadcast Streams

    Moeen Tayyab1, Ayyaz Hussain2,*, Usama Mir3, M. Aqeel Iqbal4, Muhammad Haneef5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6177-6193, 2023, DOI:10.32604/cmc.2023.034669 - 28 December 2022

    Abstract The news ticker is a common feature of many different news networks that display headlines and other information. News ticker recognition applications are highly valuable in e-business and news surveillance for media regulatory authorities. In this paper, we focus on the automatic Arabic Ticker Recognition system for the Al-Ekhbariya news channel. The primary emphasis of this research is on ticker recognition methods and storage schemes. To that end, the research is aimed at character-wise explicit segmentation using a semantic segmentation technique and words identification method. The proposed learning architecture considers the grouping of homogeneous-shaped classes. More >

  • Open Access

    ARTICLE

    An Auto-Grading Oriented Approach for Off-Line Handwritten Organic Cyclic Compound Structure Formulas Recognition

    Ting Zhang, Yifei Wang, Xinxin Jin, Zhiwen Gu, Xiaoliang Zhang, Bin He*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2267-2285, 2023, DOI:10.32604/cmes.2023.023229 - 23 November 2022

    Abstract Auto-grading, as an instruction tool, could reduce teachers’ workload, provide students with instant feedback and support highly personalized learning. Therefore, this topic attracts considerable attentions from researchers recently. To realize the automatic grading of handwritten chemistry assignments, the problem of chemical notations recognition should be solved first. The recent handwritten chemical notations recognition solutions belonging to the end-to-end trainable category suffered from the problem of lacking the accurate alignment information between the input and output. They serve the aim of reading notations into electrical devices to better prepare relevant e-documents instead of auto-grading handwritten assignments.… More >

  • Open Access

    ARTICLE

    An Efficient Hybrid Model for Arabic Text Recognition

    Hicham Lamtougui1,*, Hicham El Moubtahij2, Hassan Fouadi1, Khalid Satori1

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2871-2888, 2023, DOI:10.32604/cmc.2023.032550 - 31 October 2022

    Abstract In recent years, Deep Learning models have become indispensable in several fields such as computer vision, automatic object recognition, and automatic natural language processing. The implementation of a robust and efficient handwritten text recognition system remains a challenge for the research community in this field, especially for the Arabic language, which, compared to other languages, has a dearth of published works. In this work, we presented an efficient and new system for offline Arabic handwritten text recognition. Our new approach is based on the combination of a Convolutional Neural Network (CNN) and a Bidirectional Long-Term More >

  • Open Access

    ARTICLE

    Enhanced Attention-Based Encoder-Decoder Framework for Text Recognition

    S. Prabu, K. Joseph Abraham Sundar*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2071-2086, 2023, DOI:10.32604/iasc.2023.029105 - 19 July 2022

    Abstract Recognizing irregular text in natural images is a challenging task in computer vision. The existing approaches still face difficulties in recognizing irregular text because of its diverse shapes. In this paper, we propose a simple yet powerful irregular text recognition framework based on an encoder-decoder architecture. The proposed framework is divided into four main modules. Firstly, in the image transformation module, a Thin Plate Spline (TPS) transformation is employed to transform the irregular text image into a readable text image. Secondly, we propose a novel Spatial Attention Module (SAM) to compel the model to concentrate… More >

Displaying 1-10 on page 1 of 24. Per Page