Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Tensile Behavior of Strain Hardening Cementitious Composites (SHCC) Containing Reactive Recycled Powder from Various C&D Waste

    Ruixue Wu1, Tiejun Zhao1, Peng Zhang1, Dingyi Yang2, Miao Liu2, Zhiming Ma2,*

    Journal of Renewable Materials, Vol.9, No.4, pp. 743-765, 2021, DOI:10.32604/jrm.2021.013669


    This work investigates the feasibility of utilizing reactive recycled powder (RP) from construction and demolition (C&D) waste as supplementary cementitious material (SCM) to achieve a ductile strain hardening cementitious composites (SHCC). The recycled mortar powder (RMP) from mortar waste, recycled concrete powder (RCP) from concrete waste and recycled brick powder (RBP) from clay brick waste were first prepared, and the micro-properties and tensile behavior of SHCC containing various types and replacement ratios of RPs were determined. The incorporated RP promotes pozzolanic and filler effects, while the hydration products in cementitious materials decrease with RP incorporation; therefore, the incorporated RP decreases… More >

  • Open Access


    Finite Element Analysis of a Newly Designed Straight Three-layered Seale Wire Strand

    Chun-Lei Yu1, Bin-Jie Dong2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 865-873, 2019, DOI:10.31209/2019.100000090

    Abstract A new geometry design method of three-layered Seale wire strand is proposed. The included angle between adjacent helical wires in the same layer, which is assumed as zero in the conventional design method, can be predefined arbitrarily by using the new method. The key process of deriving the diameter ratio of each layer wires was formulated into a one-dimensional problem and golden section method was applied to solve the problem efficiently. Finite element analysis of the newly developed three-layered Seale strand was also implemented by using a concise finite element model (FEM) which takes full advantage of the helical symmetry… More >

  • Open Access


    Mechanism study of TiO2 nanowire tensile behaviors via molecular dynamics simulations

    L. Dai1, V.B.C. Tan1,2, C.H. Sow1,3, C.T. Lim1,2,4, W.C.D. Cheong5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.3, pp. 151-162, 2009, DOI:10.3970/icces.2009.009.151

    Abstract The mechanisms governing the tensile response of TiO2 nanowires were studied by molecular dynamics simulations. The free side surfaces of the nanowires were found to be undulating because atoms near the free surface were relaxed into a disordered state during thermodynamic equilibration. For wires below a threshold diameter of around 10 Å, this free surface effect extends throughout the entire wire, resulting in a complete lack of ordered structure. For thick nanowires, the core of the wire retains a crystalline structure. The thicker the wire, the larger the crystalline core and the more dominant is its effect on the tensile… More >

Displaying 1-10 on page 1 of 3. Per Page  

Share Link