Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024

    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open Access

    ARTICLE

    Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation

    Jiaqi Gao1, Kangfeng Zheng1,*, Xiujuan Wang2, Chunhua Wu1, Bin Wu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 251-270, 2024, DOI:10.32604/cmc.2024.055560 - 15 October 2024

    Abstract User identity linkage (UIL) refers to identifying user accounts belonging to the same identity across different social media platforms. Most of the current research is based on text analysis, which fails to fully explore the rich image resources generated by users, and the existing attempts touch on the multimodal domain, but still face the challenge of semantic differences between text and images. Given this, we investigate the UIL task across different social media platforms based on multimodal user-generated contents (UGCs). We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation… More >

  • Open Access

    ARTICLE

    Spatiotemporal Prediction of Urban Traffics Based on Deep GNN

    Ming Luo1, Huili Dou2, Ning Zheng3,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 265-282, 2024, DOI:10.32604/cmc.2023.040067 - 30 January 2024

    Abstract Traffic prediction already plays a significant role in applications like traffic planning and urban management, but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data. As well as to fulfil both long-term and short-term prediction objectives, a better representation of the temporal dependency and global spatial correlation of traffic data is needed. In order to do this, the Spatiotemporal Graph Neural Network (S-GNN) is proposed in this research as a method for traffic prediction. The S-GNN simultaneously accepts various traffic data as inputs and investigates the non-linear correlations… More >

  • Open Access

    ARTICLE

    Enhanced Temporal Correlation for Universal Lesion Detection

    Muwei Jian1,2,*, Yue Jin1, Hui Yu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 3051-3063, 2024, DOI:10.32604/cmes.2023.030236 - 15 December 2023

    Abstract Universal lesion detection (ULD) methods for computed tomography (CT) images play a vital role in the modern clinical medicine and intelligent automation. It is well known that single 2D CT slices lack spatial-temporal characteristics and contextual information compared to 3D CT blocks. However, 3D CT blocks necessitate significantly higher hardware resources during the learning phase. Therefore, efficiently exploiting temporal correlation and spatial-temporal features of 2D CT slices is crucial for ULD tasks. In this paper, we propose a ULD network with the enhanced temporal correlation for this purpose, named TCE-Net. The designed TCE module is More >

Displaying 1-10 on page 1 of 4. Per Page