Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (918)
  • Open Access

    REVIEW

    A Comprehensive Literature Review of AI-Driven Application Mapping and Scheduling Techniques for Network-on-Chip Systems

    Naveed Ahmad1, Muhammad Kaleem2, Mourad Elloumi3, Muhammad Azhar Mushtaq2, Ahlem Fatnassi4, Mohd Fazil5, Anas Bilal6,*, Abdulbasit A. Darem7,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074902 - 29 January 2026

    Abstract Network-on-Chip (NoC) systems are progressively deployed in connecting massively parallel megacore systems in the new computing architecture. As a result, application mapping has become an important aspect of performance and scalability, as current trends require the distribution of computation across network nodes/points. In this paper, we survey a large number of mapping and scheduling techniques designed for NoC architectures. This time, we concentrated on 3D systems. We take a systematic literature review approach to analyze existing methods across static, dynamic, hybrid, and machine-learning-based approaches, alongside preliminary AI-based dynamic models in recent works. We classify them… More >

  • Open Access

    REVIEW

    An Overview of Segmentation Techniques in Breast Cancer Detection: From Classical to Hybrid Model

    Hanifah Rahmi Fajrin1,2, Se Dong Min1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072609 - 12 January 2026

    Abstract Accurate segmentation of breast cancer in mammogram images plays a critical role in early diagnosis and treatment planning. As research in this domain continues to expand, various segmentation techniques have been proposed across classical image processing, machine learning (ML), deep learning (DL), and hybrid/ensemble models. This study conducts a systematic literature review using the PRISMA methodology, analyzing 57 selected articles to explore how these methods have evolved and been applied. The review highlights the strengths and limitations of each approach, identifies commonly used public datasets, and observes emerging trends in model integration and clinical relevance. More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025

    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025

    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

  • Open Access

    ARTICLE

    X-MalNet: A CNN-Based Malware Detection Model with Visual and Structural Interpretability

    Kirubavathi Ganapathiyappan1, Heba G. Mohamed2, Abhishek Yadav1, Guru Akshya Chinnaswamy1, Ateeq Ur Rehman3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.069951 - 09 December 2025

    Abstract The escalating complexity of modern malware continues to undermine the effectiveness of traditional signature-based detection techniques, which are often unable to adapt to rapidly evolving attack patterns. To address these challenges, this study proposes X-MalNet, a lightweight Convolutional Neural Network (CNN) framework designed for static malware classification through image-based representations of binary executables. By converting malware binaries into grayscale images, the model extracts distinctive structural and texture-level features that signify malicious intent, thereby eliminating the dependence on manual feature engineering or dynamic behavioral analysis. Built upon a modified AlexNet architecture, X-MalNet employs transfer learning to… More >

  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    DriftXMiner: A Resilient Process Intelligence Approach for Safe and Transparent Detection of Incremental Concept Drift in Process Mining

    Puneetha B. H.1,*, Manoj Kumar M. V.2,*, Prashanth B. S.2, Piyush Kumar Pareek3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.067706 - 10 November 2025

    Abstract Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational, organizational, or regulatory factors. These changes, referred to as incremental concept drift, gradually alter the behavior or structure of processes, making their detection and localization a challenging task. Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift, particularly from a control-flow perspective. The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs, with a… More >

  • Open Access

    EDITORIAL

    Current practices and future directions in prostate biopsy techniques: insights from a meta-analysis and european multicenter survey

    Xingkang Jiang*, Jing Tian, Yong Xu

    Canadian Journal of Urology, Vol.32, No.6, pp. 539-540, 2025, DOI:10.32604/cju.2025.073363 - 30 December 2025

    Abstract This article has no abstract. More >

Displaying 1-10 on page 1 of 918. Per Page