Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage

    Matiewos Mekonen Abera1,2,*, Venkata Ramayya Ancha1, Balewgize Amare1, L. Syam Sundar3, Kotturu V. V. Chandra Mouli4, Sambasivam Sangaraju5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1043-1070, 2024, DOI:10.32604/fhmt.2024.049525 - 30 August 2024

    Abstract This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well. The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage. Parameters that control this optimization are storage height, storage diameter, heat transfer fluid flow rate, and sand bed particle size. The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method. Accordingly, the optimized parameters… More >

  • Open Access

    ARTICLE

    Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds

    Po-Yuan Yang1,*, Yu-Cheng Liao2, Fu-I Chou2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2861-2880, 2023, DOI:10.32604/csse.2023.036810 - 03 April 2023

    Abstract Aquaculture has long been a critical economic sector in Taiwan. Since a key factor in aquaculture production efficiency is water quality, an effective means of monitoring the dissolved oxygen content (DOC) of aquaculture water is essential. This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality. Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality. Since aquaculture water quality depends on a continuous interaction among multiple factors, and the current state is correlated… More >

  • Open Access

    ARTICLE

    Optimum Design of Stair-Climbing Robots Using Taguchi Method

    A. Arunkumar1,*, S. Ramabalan1, D. Elayaraja2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1229-1244, 2023, DOI:10.32604/iasc.2023.027388 - 06 June 2022

    Abstract Environmental issues like pollution are major threats to human health. Many systems are developed to reduce pollution. In this paper, an optimal mobile robot design to reduce pollution in Green supply chain management system. Green supply chain management involves as similating environmentally and economically feasible solutions into the supply chain life-cycle. Smartness, advanced technologies, and advanced networks are becoming pillars of a sustainable supply chain management system. At the same time, there is much change happening in the logistics industry. They are moving towards a new logistics model. In the new model, robotic logistics has… More >

  • Open Access

    ARTICLE

    Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS

    Ngoc Thai Huynh1, Tien V. T. Nguyen2, Quoc Manh Nguyen3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5961-5983, 2022, DOI:10.32604/cmc.2022.029484 - 28 July 2022

    Abstract To achieve high work performance for compliant mechanisms of motion scope, continuous work condition, and high frequency, we propose a new hybrid algorithm that could be applied to multi-objective optimum design. In this investigation, we use the tools of finite element analysis (FEA) for a magnification mechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements. A poly-algorithm including the Grey-Taguchi method, fuzzy logic system, and adaptive neuro-fuzzy inference system (ANFIS) algorithm, was utilized mainly in this study.… More >

  • Open Access

    ARTICLE

    The Interaction Effects of the Parameters on Optimization Design in Paper Production Waste Usage on Alkali-Activated Slag with Taguchi Method

    Teng Yi1,*, Shuenn-Ren Liou1, Wen-Yih Kuo1,2

    Journal of Renewable Materials, Vol.10, No.6, pp. 1753-1772, 2022, DOI:10.32604/jrm.2022.018587 - 20 January 2022

    Abstract The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste (PPW) and blast furnace slag (BFS) in Taguchi method. The PPW including lime mud (LM) and paper sludge (PS). This paper provides the experimental models to assess the compressive and flexural strength of them at 7-day and 28-day. The results have shown that the second-order interactions between PPW and alkali-activated activator exists in each experimental model, and the significant interactions affect the selection of optimal compositions. Compared with the interactions between the PPW themselves, the interactions between PPW and… More >

  • Open Access

    ARTICLE

    Using the Taguchi Method and Grey Relational Analysis to Optimize the Performance of a Solar Air Heater

    Manar B. AL-Hajji1,*, Nabeel Abu Shaban2, Shahnaz Al Khalil2, Ayat Al-Jarrah3

    Energy Engineering, Vol.118, No.5, pp. 1425-1438, 2021, DOI:10.32604/EE.2021.016413 - 16 July 2021

    Abstract Solar energy is regarded as one of the promising renewable energy sources in the world.The main aim of this study is to use the Taguchi-Grey relational grade analysis to optimize the performance of two Solar Air Heaters (SAHs). A typical Grey–Taguchi method was applied. The Orthogonal Array, Signal-to-Noise ratio, Grey Relational Grade, and Analysis of Variance were employed to investigate the performance characteristics of SAH. Experimental observations were made in agreement with Jordanian climate 32°00′ N latitude and 36°00′ E longitude with a solar intensity of 500 W\m2. The operating factors selected for optimization are the… More >

  • Open Access

    ARTICLE

    STUDY ON THERMAL AND HYDRAULIC PERFORMANCE OF THE FINNED FLAT-TUBE HEAT EXCHANGER WITH SINGLE ROW AND ITS OPTIMIZATION

    Weiwei Zhang, Linghong Tang*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-7, 2020, DOI:10.5098/hmt.15.9

    Abstract Air-side thermal and hydraulic performance of the finned flat-tube heat exchanger with single row is experimentally investigated. The correlations of the thermal and hydraulic performance are developed based on the experimental data. The effects of various fin geometrical parameters on the thermal and hydraulic performance are investigated by a numerical method, and the influence of various parameters is analyzed in detail. Results show that heat transfer performance and pressure drop decrease with the increasing fin pitch, and heat transfer performance increases with the increase of fin length and fin height accompanying with the increase of More >

  • Open Access

    ARTICLE

    Taguching the Atmospheric Plasma Spraying Process: Influence of Processing Factors on Droplet Impact Properties Obtained on Dense ZrO2 and H2Ar75% Plasma Gas

    Ridha Djebali1, Mohsen Toujani2, Bernard Pateyron3

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 147-160, 2013, DOI:10.3970/cmc.2013.037.147

    Abstract In this paper a study of the atmospheric plasma spraying process was conducted. The Jets&Poudres code was used to solve the partial differential equations for the conservation of mass, momentum and energy involved in the problem together with the K-e turbulent model. The Taguchi technique was used to study the influence of processing factors on droplet impact properties obtained on dense zirconia (ZrO2) under H2Ar75% plasma gas that allow optimal functioning condition. The test of the operating parameters for the studied ranges showed that the "thermal power" factor plays a key role on the state of sprayed More >

Displaying 1-10 on page 1 of 8. Per Page