Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Park Integrated Energy System Optimization Considering Carbon Excess Ratio and Electric Vehicle Coupling

    Yanjie Liu, Ximin Cao*, Yanchi Zhang

    Energy Engineering, Vol.122, No.8, pp. 3377-3398, 2025, DOI:10.32604/ee.2025.066577 - 24 July 2025

    Abstract Under the “dual carbon” goals, this paper constructs an optimization model of the comprehensive energy system in the park. A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed: A carbon quota trading system is established based on the baseline method, and the stepwise function is adopted to quantify the cost of excess carbon emissions; Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid (V2G) to enhance the flexible regulation ability. Aiming at the uncertainty of wind and solar output, a typical scene set is generated… More >

  • Open Access

    ARTICLE

    Enhancing Hierarchical Task Network Planning through Ant Colony Optimization in Refinement Process

    Mohamed Elkawkagy1, Ibrahim A. Elgendy2,*, Ammar Muthanna3,4, Reem Ibrahim Alkanhel5, Heba Elbeh1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 393-415, 2025, DOI:10.32604/cmc.2025.063766 - 09 June 2025

    Abstract Hierarchical Task Network (HTN) planning is a powerful technique in artificial intelligence for handling complex problems by decomposing them into hierarchical task structures. However, achieving optimal solutions in HTN planning remains a challenge, especially in scenarios where traditional search algorithms struggle to navigate the vast solution space efficiently. This research proposes a novel technique to enhance HTN planning by integrating the Ant Colony Optimization (ACO) algorithm into the refinement process. The Ant System algorithm, inspired by the foraging behavior of ants, is well-suited for addressing optimization problems by efficiently exploring solution spaces. By incorporating ACO… More >

  • Open Access

    ARTICLE

    Maximizing Solar Potential Using the Differential Grey Wolf Algorithm for PV System Optimization

    Ezhilmathi Nagarathinam1, Buvana Devaraju2, Karthiyayini Jayamoorthy3, Padmavathi Radhakrishnan4, Santhana Lakshmi ChandraMohan5, Vijayakumar Perumal6, Karthikeyan Balakrishnan7,*

    Energy Engineering, Vol.121, No.8, pp. 2129-2142, 2024, DOI:10.32604/ee.2024.052280 - 19 July 2024

    Abstract Maximum Power Point Tracking (MPPT) is crucial for maximizing the energy output of photovoltaic (PV) systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions. This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer (DGWO). It dynamically adjusts the parameters of the MPPT controller, specifically the duty cycle of the SEPIC converter, to efficiently track the Maximum Power Point (MPP). The proposed system aims to enhance the energy harvesting capability of solar PV More >

  • Open Access

    ARTICLE

    The Impact of Hydrogen Energy Storage on the Electricity Harvesting

    Ghassan Mousa1, Ayman A. Aly2, Imran Khan3, Dag Øivind Madsen4,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1963-1978, 2023, DOI:10.32604/iasc.2023.033627 - 05 January 2023

    Abstract The economics, infrastructure, transportation, and level of living of a country are all influenced by energy. The gap between energy usage and availability is a global issue. Currently, all countries rely on fossil fuels for energy generation, and these fossil fuels are not sustainable. The hydrogen proton exchange membrane fuel cell (PEMFC) power system is both clean and efficient. The fuel delivery system and the PEMFC make up the majority of the PEMFC power system. The lack of an efficient, safe, and cost-effective hydrogen storage system is still a major barrier to its widespread use.… More >

  • Open Access

    ARTICLE

    Design and Analysis of a Small Sewage Source Heat Pump Triple Supply System

    Chunxue Gao1,*, Yu Hao1, Qiuxin Liu1,2

    Energy Engineering, Vol.118, No.3, pp. 667-678, 2021, DOI:10.32604/EE.2021.014703 - 22 March 2021

    Abstract Based on the characteristics of sewage from beauty salons, a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system. The results show that with the increase of sewage temperature and flow, the performance of the system also increases. In summer conditions, the system provides cooling, recovers waste heat and condensed heat from sewage, with a COP value of 8.97; in winter conditions, the system heats and produces hot water, with a COP value of 2.44; More >

  • Open Access

    ARTICLE

    Design and Optimization of a Hybrid Energy System for Decentralized Heating

    Ling Cheng1,2,3,*, Bingqing Guo1,2, Kecheng Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 49-70, 2021, DOI:10.32604/fdmp.2021.011062 - 09 February 2021

    Abstract The performances of a hybrid energy system for decentralized heating are investigated. The proposed energy system consists of a solar collector, an air-source heat pump, a gas-fired boiler and a hot water tank. A mathematical model is developed to predict the operating characteristics of the system. The simulation results are compared with experimental data. Such a comparison indicates that the model accuracy is sufficient. The influence of the flat plate solar collector area on the economic and energy efficiency of such system is also evaluated through numerical simulations. Finally, this system is optimized using the More >

  • Open Access

    ARTICLE

    System Optimization for the Development of Ultrasensitive Electronic Biosensors Using Carbon Nanotube Nanoelectrode Arrays

    Jessica E. Koehne, Jun Li1, Alan M. Cassell, Hua Chen, Qi Ye, Jie Han, M. Meyyappan

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 69-80, 2004, DOI:10.3970/mcb.2004.001.069

    Abstract Vertically aligned multi-walled carbon nanotubes (MWCNTs) have been reported in fabricating nanoelectrode arrays. Further studies on optimizing this system for the development of ultrasensitive DNA sensors are reported here. The mechanical stability of the as-grown MWCNT array can be improved by polymer coating or SiO2 encapsulation. The latter method provides excellent electronic and ionic insulation to the sidewall of MWCNTs and the underlying metal layer, which is investigated with electrochemical impedance spectroscopy. The insulation ensures well-defined nanoelectrode behavior. A method is developed for selectively functionalizing biomolecules at the open end of MWCNTs while keeping the SiO2 More >

Displaying 1-10 on page 1 of 7. Per Page