Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Enhanced UAV Pursuit-Evasion Using Boids Modelling: A Synergistic Integration of Bird Swarm Intelligence and DRL

    Weiqiang Jin1,#, Xingwu Tian1,#, Bohang Shi1, Biao Zhao1,*, Haibin Duan2, Hao Wu3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3523-3553, 2024, DOI:10.32604/cmc.2024.055125 - 12 September 2024

    Abstract The UAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles (UAVs), which is pivotal in public safety applications, particularly in scenarios involving intrusion monitoring and interception. To address the challenges of data acquisition, real-world deployment, and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks, we propose an innovative swarm intelligence-based UAV pursuit-evasion control framework, namely “Boids Model-based DRL Approach for Pursuit and Escape” (Boids-PE), which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning (DRL). The Boids model, which simulates collective… More >

  • Open Access

    ARTICLE

    Microarray Gene Expression Classification: An Efficient Feature Selection Using Hybrid Swarm Intelligence Algorithm

    Punam Gulande*, R. N. Awale

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 937-952, 2024, DOI:10.32604/csse.2024.046123 - 17 July 2024

    Abstract The study of gene expression has emerged as a vital tool for cancer diagnosis and prognosis, particularly with the advent of microarray technology that enables the measurement of thousands of genes in a single sample. While this wealth of data offers invaluable insights for disease management, the high dimensionality poses a challenge for multiclass classification. In this context, selecting relevant features becomes essential to enhance classification model performance. Swarm Intelligence algorithms have proven effective in addressing this challenge, owing to their ability to navigate intricate, non-linear feature-class relationships. This paper introduces a novel hybrid swarm More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials

    Abidhan Bardhan1,*, Raushan Kumar Singh2, Mohammed Alatiyyah3, Sulaiman Abdullah Alateyah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1521-1555, 2024, DOI:10.32604/cmes.2023.044467 - 29 January 2024

    Abstract This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS) of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO, was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results… More >

  • Open Access

    ARTICLE

    Ensemble of Population-Based Metaheuristic Algorithms

    Hao Li, Jun Tang*, Qingtao Pan, Jianjun Zhan, Songyang Lao

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2835-2859, 2023, DOI:10.32604/cmc.2023.038670 - 08 October 2023

    Abstract No optimization algorithm can obtain satisfactory results in all optimization tasks. Thus, it is an effective way to deal with the problem by an ensemble of multiple algorithms. This paper proposes an ensemble of population-based metaheuristics (EPM) to solve single-objective optimization problems. The design of the EPM framework includes three stages: the initial stage, the update stage, and the final stage. The framework applies the transformation of the real and virtual population to balance the problem of exploration and exploitation at the population level and uses an elite strategy to communicate among virtual populations. The… More >

  • Open Access

    ARTICLE

    Muti-Fusion Swarm Intelligence Optimization Algorithm in Base Station Coverage Optimization Problems

    Zhenyu Yan1,*, Haotian Bian2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2241-2257, 2023, DOI:10.32604/csse.2023.040603 - 28 July 2023

    Abstract As millimeter waves will be widely used in the Internet of Things (IoT) and Telematics to provide high bandwidth communication and mass connectivity, the coverage optimization of base stations can effectively improve the quality of communication services. How to optimize the convergence speed of the base station coverage solution is crucial for IoT service providers. This paper proposes the Muti-Fusion Sparrow Search Algorithm (MFSSA) optimize the situation to address the problem of discrete coverage maximization and rapid convergence. Firstly, the initial swarm diversity is enriched using a sine chaotic map, and dynamic adaptive weighting is… More >

  • Open Access

    ARTICLE

    Optimization of Resource Allocation in Unmanned Aerial Vehicles Based on Swarm Intelligence Algorithms

    Siling Feng1, Yinjie Chen1, Mengxing Huang1,2,*, Feng Shu1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4341-4355, 2023, DOI:10.32604/cmc.2023.037154 - 31 March 2023

    Abstract Due to their adaptability, Unmanned Aerial Vehicles (UAVs) play an essential role in the Internet of Things (IoT). Using wireless power transfer (WPT) techniques, an UAV can be supplied with energy while in flight, thereby extending the lifetime of this energy-constrained device. This paper investigates the optimization of resource allocation in light of the fact that power transfer and data transmission cannot be performed simultaneously. In this paper, we propose an optimization strategy for the resource allocation of UAVs in sensor communication networks. It is a practical solution to the problem of marine sensor networks… More >

  • Open Access

    ARTICLE

    A Double Adaptive Random Spare Reinforced Sine Cosine Algorithm

    Abdelazim G. Hussien1,2, Guoxi Liang3, Huiling Chen4,*, Haiping Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2267-2289, 2023, DOI:10.32604/cmes.2023.024247 - 09 March 2023

    Abstract Many complex optimization problems in the real world can easily fall into local optimality and fail to find the optimal solution, so more new techniques and methods are needed to solve such challenges. Metaheuristic algorithms have received a lot of attention in recent years because of their efficient performance and simple structure. Sine Cosine Algorithm (SCA) is a recent Metaheuristic algorithm that is based on two trigonometric functions Sine & Cosine. However, like all other metaheuristic algorithms, SCA has a slow convergence and may fail in sub-optimal regions. In this study, an enhanced version of More >

  • Open Access

    ARTICLE

    Improved Hybrid Swarm Intelligence for Optimizing the Energy in WSN

    Ahmed Najat Ahmed1, JinHyung Kim2, Yunyoung Nam3,*, Mohamed Abouhawwash4,5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2527-2542, 2023, DOI:10.32604/csse.2023.036106 - 09 February 2023

    Abstract In this current century, most industries are moving towards automation, where human intervention is dramatically reduced. This revolution leads to industrial revolution 4.0, which uses the Internet of Things (IoT) and wireless sensor networks (WSN). With its associated applications, this IoT device is used to compute the received WSN data from devices and transfer it to remote locations for assistance. In general, WSNs, the gateways are a long distance from the base station (BS) and are communicated through the gateways nearer to the BS. At the gateway, which is closer to the BS, energy drains… More >

  • Open Access

    ARTICLE

    Application of Physical Unclonable Function for Lightweight Authentication in Internet of Things

    Ahmad O. Aseeri1, Sajjad Hussain Chauhdary2,*, Mohammed Saeed Alkatheiri3, Mohammed A. Alqarni4, Yu Zhuang5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1901-1918, 2023, DOI:10.32604/cmc.2023.028777 - 06 February 2023

    Abstract IoT devices rely on authentication mechanisms to render secure message exchange. During data transmission, scalability, data integrity, and processing time have been considered challenging aspects for a system constituted by IoT devices. The application of physical unclonable functions (PUFs) ensures secure data transmission among the internet of things (IoT) devices in a simplified network with an efficient time-stamped agreement. This paper proposes a secure, lightweight, cost-efficient reinforcement machine learning framework (SLCR-MLF) to achieve decentralization and security, thus enabling scalability, data integrity, and optimized processing time in IoT devices. PUF has been integrated into SLCR-MLF to… More >

Displaying 1-10 on page 1 of 39. Per Page