Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Sustainable Emergency Rescue Products: Design and Monitoring Techniques for Preventing and Mitigating Construction Failures in Unforeseen Circumstances

    Xiaobo Jiang, Hongchao Zheng*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1695-1716, 2025, DOI:10.32604/sdhm.2025.063890 - 17 November 2025

    Abstract Construction failures caused by unforeseen circumstances, such as natural disasters, environmental degradation, and structural weaknesses, present significant challenges in achieving durability, safety, and sustainability. This research addresses these challenges through the development of advanced emergency rescue systems incorporating wood-derived nanomaterials and IoT-enabled Structural Health Monitoring (SHM) technologies. The use of nanocellulose which demonstrates outstanding mechanical capabilities and biodegradability alongside high resilience allowed developers to design modular rescue systems that function effectively even under challenging conditions while providing real-time failure protection. Experimental data from testing showed that the replacement system strengthened load-bearing limits by 20% while… More >

  • Open Access

    REVIEW

    Bamboo Parenchymal Cells: An Untapped Bio-Based Resource for Sustainable Material

    Yao Xia1, Yuxiang Huang1,*, Shifeng Zhang2, Yanglun Yu1

    Journal of Renewable Materials, Vol.13, No.10, pp. 1881-1898, 2025, DOI:10.32604/jrm.2025.02025-0068 - 22 October 2025

    Abstract Bamboo parenchymal cells (PCs) represent an underutilized resource with significant potential as a sustainable and versatile bio-based material. Despite the extensive research on bamboo fibers, PCs, comprising a considerable portion of bamboo, have been largely overlooked. This review examines the multi-scale structure of bamboo PCs, including their microcapsules, multi-wall layers, and pits, which provide the structural foundation for diverse applications. Various physical and chemical isolation methods, impacting the properties of extracted PCs, are also discussed. Notably, the review explores the promising applications of bamboo PCs, highlighting their use as filler materials in formaldehyde-free composites, as More > Graphic Abstract

    Bamboo Parenchymal Cells: An Untapped Bio-Based Resource for Sustainable Material

  • Open Access

    REVIEW

    Sustainable Biocomposites from Renewable Resources in West Africa: A Review

    Souha Mansour1,2,*, Amandine Viretto1,2, Marie-France Thevenon1,2,*, Loïc Brancheriau1,2

    Journal of Renewable Materials, Vol.13, No.8, pp. 1547-1586, 2025, DOI:10.32604/jrm.2025.02024-0078 - 22 August 2025

    Abstract The use of agricultural residues in biocomposite production has gained increasing attention, driven by several benefits. Converting agricultural by-products into bio-based materials within a circular economy represents a sustainable strategy to mitigate lignocellulosic waste, reduce reliance on fossil resources, and lower environmental pollution. This approach also creates economic opportunities for rural African communities by generating diverse income sources for workers in collection, processing, and manufacturing. As a result, the integration of agricultural residues into biocomposites production not only addresses environmental concerns but also fosters economic growth and supports rural development. In this review, five biomasses… More > Graphic Abstract

    Sustainable Biocomposites from Renewable Resources in West Africa: A Review

  • Open Access

    REVIEW

    Integration of Biopolyesters and Natural Fibers in Structural Composites: An Innovative Approach for Sustainable Materials

    Nasmi Herlina Sari1,*, Suteja1, Widya Fatriasari2

    Journal of Renewable Materials, Vol.13, No.8, pp. 1521-1546, 2025, DOI:10.32604/jrm.2025.02024-0058 - 22 August 2025

    Abstract Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials. Biopolyesters including polylactic acid (PLA), polybutylene succinate (PBS), and polyhydroxyalkanoate (PHA), when mixed with natural fibers such as kenaf, hemp, and jute, provide an environmentally acceptable alternative to traditional fossil-based materials. This article examines current research on developments in the integration of biopolymers with natural fibers, with a focus on enhancing mechanical, thermal, and sustainability. Innovative approaches to surface treatment of natural fibers, such as biological and chemical treatments, have demonstrated enhanced adhesion with biopolymer matrices, increasing attributes such as… More > Graphic Abstract

    Integration of Biopolyesters and Natural Fibers in Structural Composites: An Innovative Approach for Sustainable Materials

  • Open Access

    REVIEW

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

    Sachin Ghalme1,*, Mohammad Hayat2, Mahesh Harne3

    Journal of Renewable Materials, Vol.13, No.2, pp. 273-295, 2025, DOI:10.32604/jrm.2024.056275 - 20 February 2025

    Abstract With growing concerns for global warming and environmental issues, the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinforced polymer composites (NFRPC). Polymers serve as the matrix in NFRPC, while natural fibers serve as the reinforcing materials. Demand for high-performing materials made with natural resources is growing continuously. Natural fiber-reinforced polymer composites are sustainable biocomposites fabricated with natural fibers embedded with a polymer matrix. They offer a wide range of advantages, including a low weight-to-strength ratio, high flexural strength, damping properties, and resistance… More > Graphic Abstract

    A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology

  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

  • Open Access

    ARTICLE

    CLT Fabricated with Gmelina arborea and Tectona grandis Wood from Fast-Growth Forest Plantations: Physical and Mechanical Properties

    Freddy Muñoz1, Carolina Tenorio1, Róger Moya1,*, Angel Navarro-Mora2

    Journal of Renewable Materials, Vol.10, No.1, pp. 1-17, 2022, DOI:10.32604/jrm.2022.017392 - 27 July 2021

    Abstract Fabrication and use of Cross Laminated Timber (CLT) using tropical woods is still limited at present. Therefore objective of the present study aims to determine the possibility of using CLT panels of 3 and 5 layers, fabricated with Tectona grandis and Gmelina arborea wood using adhesive of isocyanate polymer emulsion system catalyzed with polymeric isocyanate. Delamination, water absorption, density, flexure test, compression and glue-line shear were evaluated using ANSI/APA PRG320-2012 ASTM D198 and ASTM D4761 standard. The results showed that CLT panels of T. grandis presented higher values of density, less water absorption and lower delamination, with no… More >

  • Open Access

    ARTICLE

    On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength

    Isamar Rosa1, Henning Roedel1, Maria I. Allende1, Michael D. Lepech1,*, David J. Loftus2

    Journal of Renewable Materials, Vol.8, No.8, pp. 845-861, 2020, DOI:10.32604/jrm.2020.09844 - 10 July 2020

    Abstract Biopolymer-bound Soil Composites (BSC), are a novel bio-based construction material class, produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization, brick creation and in situ construction on Earth and space. This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination. Twenty protein and sand mix designs were investigated, with varying amounts of biopolymer solution and compaction regimes during manufacture. The ultimate compressive strength, density, and shrinkage of BSC samples are reported. It is observed that the compressive strength of BSC materials increases proportional More >

  • Open Access

    ARTICLE

    Sustainable Materials Based on Cellulose from Food Sector Agro-Wastes

    T. Côto1, I. Moura1, A. de Sá1,*, C. Vilarinho2, A. V. Machado1

    Journal of Renewable Materials, Vol.6, No.7, pp. 688-696, 2018, DOI:10.32604/JRM.2018.00006

    Abstract Biopolymers exhibit unique properties and can be produced from plants’ and crops’ wastes. Cellulose has been used for the production of sustainable materials, nevertheless due to the difficulty inherent to its extraction, several methods have been studied in order to optimize the process. Therefore, this paper reports the extraction of natural polymers from food sector agro-food wastes, including cellulose, following a green chemistry aproach. The cellulose extracted from pumpkin peel was acetylated and dispersed in a polylactic acid (PLA) matrix. The developed materials were characterized in terms of their structure, morphology and thermal stability. The More >

Displaying 1-10 on page 1 of 9. Per Page