Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (84)
  • Open Access

    REVIEW

    Microbial Fertilizer: A Sustainable Strategy for Medicinal Plants Production

    Chuang Liu1,2, Jing Xie2, Hao Liu2, Can Zhong2, Gen Pan2, Shuihan Zhang2, Jian Jin2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1221-1236, 2024, DOI:10.32604/phyton.2024.050759

    Abstract Medicinal plants have aroused considerable interest as an alternative to chemical drugs due to the beneficial effects of their active secondary metabolites. However, the extensive use of chemical fertilizers and pesticides in pursuit of yield has caused serious pollution to the environment, which is not conducive to sustainable development in the field of medicinal plants. Microbial fertilizers are a type of “green fertilizer” containing specific microorganisms that can improve the soil microbial structure, enhance plant resistance to biological and abiotic stresses, and increase the yield of medicinal plants. The root exudates of medicinal plants attract… More >

  • Open Access

    ARTICLE

    A Comprehensive Analysis of the Thermo-Chemical Properties of Sudanese Biomass for Sustainable Applications

    Wadah Mohammed1,2, Zeinab Osman2, Salah Elarabi3, Bertrand Charrier1,*

    Journal of Renewable Materials, Vol.12, No.4, pp. 721-736, 2024, DOI:10.32604/jrm.2024.031050

    Abstract The chemical composition and thermal properties of natural fibers are the most critical variables that determine the overall properties of the fibers and influence their processing and use in different sustainable applications, such as their conversion into bioenergy and biocomposites. Their thermal and mechanical properties can be estimated by evaluating the content of cellulose, lignin, and other extractives in the fibers. In this research work, the chemical composition and thermal properties of three fibers, namely bagasse, kenaf bast fibers, and cotton stalks, were evaluated to assess their potential utilization in producing biocomposites and bioenergy materials.… More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Based Air Pollution Prediction for Sustainable Smart Cities

    Maha Farouk Sabir1, Mahmoud Ragab2,3,*, Adil O. Khadidos2, Khaled H. Alyoubi1, Alaa O. Khadidos1,4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 627-643, 2024, DOI:10.32604/csse.2023.041551

    Abstract Big data and information and communication technologies can be important to the effectiveness of smart cities. Based on the maximal attention on smart city sustainability, developing data-driven smart cities is newly obtained attention as a vital technology for addressing sustainability problems. Real-time monitoring of pollution allows local authorities to analyze the present traffic condition of cities and make decisions. Relating to air pollution occurs a main environmental problem in smart city environments. The effect of the deep learning (DL) approach quickly increased and penetrated almost every domain, comprising air pollution forecast. Therefore, this article develops… More >

  • Open Access

    ARTICLE

    Efficient Route Planning for Real-Time Demand-Responsive Transit

    Hongle Li1, SeongKi Kim2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 473-492, 2024, DOI:10.32604/cmc.2024.048402

    Abstract Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetables and determines the stop and the start according to the demands. This study explores the optimization of dynamic vehicle scheduling and real-time route planning in urban public transportation systems, with a focus on bus services. It addresses the limitations of current shared mobility routing algorithms, which are primarily designed for simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. The research introduces an route planning algorithm designed to dynamically accommodate passenger travel needs… More >

  • Open Access

    REVIEW

    A Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins

    Antonio Pizzi1,*, Marie-Pierre Laborie2,3, Zeki Candan4

    Journal of Renewable Materials, Vol.12, No.3, pp. 397-425, 2024, DOI:10.32604/jrm.2023.046074

    Abstract Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products. They are a definite class of sustainable materials of the forestry industry. They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries, such as wood adhesives, metal coating, pharmaceutical/medical applications and several others. This review presents the main sources, either already or potentially commercial of More > Graphic Abstract

    A Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins

  • Open Access

    REVIEW

    Overview of Jute Fibre as Thermoplastic Matrix Polymer Reinforcement

    Tezara Cionita1,*, Mohammad Hazim Mohamad Hamdan2, Januar Parlaungan Siregar3,4,*, Deni Fajar Fitriyana5, Ramli Junid6, Wong Ling Shing7, Jamiluddin Jaafar8, Agustinus Purna Irawan9, Teuku Rihayat10, Rifky Ismail11, Athanasius Priharyoto Bayuseno11, Emilianus Jehadus12

    Journal of Renewable Materials, Vol.12, No.3, pp. 457-483, 2024, DOI:10.32604/jrm.2024.045814

    Abstract Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals (SDGs). Due to their renewable resources and biodegradability, natural fiber-reinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution. Among the natural fibre, jute fibre obtained from a bast plant has an increasing trend in the application, especially as a reinforcement material. Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites. Nevertheless, current demands More >

  • Open Access

    REVIEW

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

    Joseph O. Dirisu1,*, Imhade P. Okokpujie2,3,*, Olufunmilayo O. Joseph1, Sunday O. Oyedepo1, Oluwasegun Falodun4, Lagouge K. Tartibu3, Firdaussi D. Shehu1

    Journal of Renewable Materials, Vol.12, No.3, pp. 485-511, 2024, DOI:10.32604/jrm.2024.045188

    Abstract Research into converting waste into viable eco-friendly products has gained global concern. Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land. This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads. Materials made by biocomposite, rather than fossil fuels, will be favoured. A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements. The development… More > Graphic Abstract

    Sustainable Biocomposites Materials for Automotive Brake Pad Application: An Overview

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-2

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 223-239, 2022, DOI:10.32381/JPM.2022.39.3-4.4

    Abstract Compression-molded epoxy methacrylate of bisphenol-C-jute/treated jute-banana/groundnut/ cane sugar/pineapple leaf/rice husk/wheat husk sandwich composites were fabricated under 5 MPa pressure at room temperature for 3 h. Alkali treated jute-natural fiber sandwich composites displayed considerably improved mechanical properties over untreated jute-natural fiber sandwich composites due to surface modification of the jute fibers. Both types of sandwich composites showed high water uptake tendency, excellent hydrolytic stability against acids, alkali, and salt solutions, and also a longer equilibrium time at 30o C. Alkali treated sandwich composites revealed a considerably lower water uptake tendency than untreated sandwich composites. Observed water More >

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-1

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 205-221, 2022, DOI:10.32381/JPM.2022.39.3-4.3

    Abstract Epoxy methacrylate of bisphenol-C-jute/treated jute and their sandwich composites of white coir, brown coir, wild almond, bamboo, betel nut, and palmyra were prepared by a compression molding technique under 5MPa pressure and at room temperature for three h. The neat sample showed almost double tensile strength than its jute composite, while it is comparable for treated jute. The composites revealed substantially improved flexural strength compared to neat. The neat, jute/treated jute and their sandwich composites indicated good impact strength, pretty good Barcol hardness, and fairly good electric strength. The neat sample showed excellent volume resistivity, More >

  • Open Access

    REVIEW

    Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress and Abiotic Challenges

    Muhammad Farhan1,#, Manda Sathish2, Rafia Kiran1, Aroosa Mushtaq3, Alaa Baazeem4, Ammarah Hasnain5, Fahad Hakim1, Syed Atif Hasan Naqvi1,#,*, Mustansar Mubeen6, Yasir Iftikhar6,*, Aqleem Abbas7, Muhammad Zeeshan Hassan1, Mahmoud Moustafa8

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 581-609, 2024, DOI:10.32604/phyton.2024.046857

    Abstract

    Plant growth and resilience to abiotic stresses, such as soil salinity and drought, depend intricately on nitrogen metabolism. This review explores nitrogen’s regulatory role in plant responses to these challenges, unveiling a dynamic interplay between nitrogen availability and abiotic stress. In the context of soil salinity, a nuanced relationship emerges, featuring both antagonistic and synergistic interactions between salinity and nitrogen levels. Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation; however, excessive nitrogen can exacerbate salinity stress. We delve into the complexities of this interaction and its agricultural implications. Nitrogen, a vital element

    More >

Displaying 1-10 on page 1 of 84. Per Page