Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Droplet Condensation and Transport Properties on Multiple Composite Surface: A Molecular Dynamics Study

    Haowei Hu1,2,*, Qi Wang1, Xinnuo Chen1, Qin Li3, Mu Du4, Dong Niu5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1245-1259, 2024, DOI:10.32604/fhmt.2024.054223 - 30 August 2024

    Abstract To investigate the microscopic mechanism underlying the influence of surface-chemical gradient on heat and mass recovery, a molecular dynamics model including droplet condensation and transport process has been developed to examine heat and mass recovery performance. This work aimed at identify optimal conditions for enhancing heat and mass recovery through the combination of wettability gradient and nanopore transport. For comprehensive analysis, the structure in the simulation was categorized into three distinct groups: a homogeneous structure, a small wettability gradient, and a large wettability gradient. The homogeneous surface demonstrated low efficiency in heat and mass transfer, More >

  • Open Access

    ARTICLE

    Experimental Study on the Bubble Dynamics of Magnetized Water Boiling

    Yang Cao1,*, Jianshu Liu2, Xuhui Meng1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 675-685, 2024, DOI:10.32604/fhmt.2024.051208 - 20 May 2024

    Abstract Boiling heat transfer, as an efficient heat transfer approach, that can absorb a large amount of latent heat during the vaporization, is especially suitable for heat transfer occasions with high heat flux demands. Experimental studies show that the surface tension coefficient of pure water can be reduced sharply (up to 25%) when it is magnetized by a magnetic field applied externally. In this paper, magnetized water (MW) was used as the work fluid to conduct boiling heat transfer experiments, to explore the influence of magnetization on the boiling characteristics of pure water. The electromagnetic device… More >

  • Open Access

    ARTICLE

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.11, pp. 2321-2334, 2023, DOI:10.32604/biocell.2023.043796 - 27 November 2023

    Abstract The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies (like epithelial cancer). The altered rearrangement of epithelial cells has an impact on the development of cancer. Therefore, it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer. While the biological mechanisms include cell signaling and gene expression, the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension, epithelial surface tension, and compressive stress accumulated within the epithelium. Although the segregation of… More > Graphic Abstract

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

  • Open Access

    REVIEW

    Surface activity of cancer cells: The fusion of two cell aggregates

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469 - 26 September 2022

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out… More >

  • Open Access

    ARTICLE

    Dynamics of Free Liquid Jets Affected by Obstructions at the Jet Entrance

    V. N. Lad1, Z. V. P. Murthy1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 241-255, 2015, DOI:10.3970/fdmp.2015.011.241

    Abstract Free liquid jets are of great technical importance in a variety of applications like ink-jet printing, glass painting, spray coating and metal cutting. Here we consider the changes induced in the dynamics of such jets by the presence of obstructions at the tube exit. Using stainless steel bars of 1.5 mm diameter as obstruction objects and aqueous solutions of glycerol of varying concentrations as working fluids, we performed experiments for different configurations, including a single rod at the centre of the tube exit, two parallel rods equidistant from the centre of the tube, and a… More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. More >

  • Open Access

    ARTICLE

    Modified Algorithm for Surface Tension with Smoothed Particle Hydrodynamics and Its Applications

    H.F.Qiang1, F.Z.Chen1, W.R. Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 239-262, 2011, DOI:10.3970/cmes.2011.077.239

    Abstract Based on smoothed particle hydrodynamics (SPH) method with surface tension proposed by Morris, this paper is intended to modify equations for surface tension by modifying normal and curvature with corrective smoothing particle method (CSPM). Compared with the continuum surface force (CSF) model for surface tension employed in the traditional SPH method, the accuracy in the present paper is much higher in terms of handling the problems with large deformation and surface tension. The reason is that in the traditional SPH method the deficiency of particles is near the boundary and sharp-angled areas, and it causes… More >

  • Open Access

    ARTICLE

    On the Contact Characteristics between Droplet and Microchip/Binding Site for Self-Alignment

    Wen-Hwa Chen1,2, Tsung-Yu Huang1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 63-84, 2010, DOI:10.3970/cmc.2010.020.063

    Abstract The contact characteristics between a droplet and a microchip/binding site strongly affect the accuracy of self-alignment in the self-assembly of micro-electronic-mechanical systems. This study is mainly to implement the Surface Evolver Program, which is commonly adopted for studying surface shaped by surface tension and other energies, to investigate comprehensively the contact characteristics between the small droplet and the microchip/binding site. The details of changes in the contact line and the contact area when the microchip is subjected to translation, compression, yawing and rolling are drawn. The three-dimensional deformation of the droplet between the microchip and… More >

  • Open Access

    ARTICLE

    Development of an Apparatus for Determining Surface Tension in Drops: Post-Flight Analysis of STS-108

    Lassig, J.1, Montes, G., Quiroga, J.

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 61-80, 2009, DOI:10.3970/fdmp.2009.005.061

    Abstract This paper presents a description of the design and ensuing development of an automated liquid droplet generator and related utilization aboard the space shuttle, a) as a fluid positioning system for materials processing (attached droplet method), and b) as a means to measure surface oscillation of droplets under microgravity for determining their surface tension. More >

  • Open Access

    ARTICLE

    Determination of Non-Equilibrium Surface Tension Gradients in Marangoni Thermal Flows: Application to Aqueous Solutions of Fatty Alcohols

    G.Pétré1, K.Tshinyama, A. Azouni2, S. Van Vaerenbergh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 1-10, 2008, DOI:10.3970/fdmp.2008.004.001

    Abstract This study illustrates a relevant and practical method to determine the effective surface tension gradient in a layer subjected to a lateral temperature difference. In general, this can be hardly performed in situ without perturbing the flow. For this reason we rely on an indirect determination approach. A simple model is developed that relates the surface tension gradient to other quantities that can be measured without introducing significant disturbances in the system. Measurements of these quantities are performed in a set-up where the flow corresponds with a good approximation to a one-dimensional model. A previously used More >

Displaying 1-10 on page 1 of 12. Per Page