Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Experimental Study on the Bubble Dynamics of Magnetized Water Boiling

    Yang Cao1,*, Jianshu Liu2, Xuhui Meng1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 675-685, 2024, DOI:10.32604/fhmt.2024.051208

    Abstract Boiling heat transfer, as an efficient heat transfer approach, that can absorb a large amount of latent heat during the vaporization, is especially suitable for heat transfer occasions with high heat flux demands. Experimental studies show that the surface tension coefficient of pure water can be reduced sharply (up to 25%) when it is magnetized by a magnetic field applied externally. In this paper, magnetized water (MW) was used as the work fluid to conduct boiling heat transfer experiments, to explore the influence of magnetization on the boiling characteristics of pure water. The electromagnetic device… More >

  • Open Access

    ARTICLE

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.11, pp. 2321-2334, 2023, DOI:10.32604/biocell.2023.043796

    Abstract The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies (like epithelial cancer). The altered rearrangement of epithelial cells has an impact on the development of cancer. Therefore, it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer. While the biological mechanisms include cell signaling and gene expression, the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension, epithelial surface tension, and compressive stress accumulated within the epithelium. Although the segregation of… More > Graphic Abstract

    Dynamics along the epithelial-cancer biointerface: Hidden system complexities

  • Open Access

    REVIEW

    Surface activity of cancer cells: The fusion of two cell aggregates

    IVANA PAJIC-LIJAKOVIC*, MILAN MILIVOJEVIC

    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out… More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. More >

  • Open Access

    ARTICLE

    Modified Algorithm for Surface Tension with Smoothed Particle Hydrodynamics and Its Applications

    H.F.Qiang1, F.Z.Chen1, W.R. Gao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 239-262, 2011, DOI:10.3970/cmes.2011.077.239

    Abstract Based on smoothed particle hydrodynamics (SPH) method with surface tension proposed by Morris, this paper is intended to modify equations for surface tension by modifying normal and curvature with corrective smoothing particle method (CSPM). Compared with the continuum surface force (CSF) model for surface tension employed in the traditional SPH method, the accuracy in the present paper is much higher in terms of handling the problems with large deformation and surface tension. The reason is that in the traditional SPH method the deficiency of particles is near the boundary and sharp-angled areas, and it causes… More >

  • Open Access

    ARTICLE

    Dynamics of Free Liquid Jets Affected by Obstructions at the Jet Entrance

    V. N. Lad1, Z. V. P. Murthy1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 241-255, 2015, DOI:10.3970/fdmp.2015.011.241

    Abstract Free liquid jets are of great technical importance in a variety of applications like ink-jet printing, glass painting, spray coating and metal cutting. Here we consider the changes induced in the dynamics of such jets by the presence of obstructions at the tube exit. Using stainless steel bars of 1.5 mm diameter as obstruction objects and aqueous solutions of glycerol of varying concentrations as working fluids, we performed experiments for different configurations, including a single rod at the centre of the tube exit, two parallel rods equidistant from the centre of the tube, and a… More >

  • Open Access

    ARTICLE

    Development of an Apparatus for Determining Surface Tension in Drops: Post-Flight Analysis of STS-108

    Lassig, J.1, Montes, G., Quiroga, J.

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 61-80, 2009, DOI:10.3970/fdmp.2009.005.061

    Abstract This paper presents a description of the design and ensuing development of an automated liquid droplet generator and related utilization aboard the space shuttle, a) as a fluid positioning system for materials processing (attached droplet method), and b) as a means to measure surface oscillation of droplets under microgravity for determining their surface tension. More >

  • Open Access

    ARTICLE

    Determination of Non-Equilibrium Surface Tension Gradients in Marangoni Thermal Flows: Application to Aqueous Solutions of Fatty Alcohols

    G.Pétré1, K.Tshinyama, A. Azouni2, S. Van Vaerenbergh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 1-10, 2008, DOI:10.3970/fdmp.2008.004.001

    Abstract This study illustrates a relevant and practical method to determine the effective surface tension gradient in a layer subjected to a lateral temperature difference. In general, this can be hardly performed in situ without perturbing the flow. For this reason we rely on an indirect determination approach. A simple model is developed that relates the surface tension gradient to other quantities that can be measured without introducing significant disturbances in the system. Measurements of these quantities are performed in a set-up where the flow corresponds with a good approximation to a one-dimensional model. A previously used More >

  • Open Access

    ARTICLE

    A Unified Theory for Interphase Transport Phenomena with Interfacial Velocity and Surface Tension Gradients: Applications to Single Crystal Growth and Microgravity Sciences

    Akira Hirata1

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.3, pp. 203-230, 2007, DOI:10.3970/fdmp.2007.003.203

    Abstract This article is a summary of author's typical research works (over the last four decades) on interphase transport phenomena in the presence of interfacial fluid motion and surface tension gradients on liquid-fluid interfaces, and related applications to single crystal growth and microgravity sciences. A unified theory for momentum, heat and mass transfer on liquid-fluid and solid-fluid interfaces is proposed, which takes into account interface mobility. It is shown that interface contamination and turbulence can be well explained, respectively, by suppression and enhancement of the interfacial velocity induced by surface tension gradients. Transport phenomena on solid More >

  • Open Access

    ARTICLE

    Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method.

    Mark Sussman1, Mitsuhiro Ohta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 21-36, 2007, DOI:10.3970/fdmp.2007.003.021

    Abstract In this paper, we describe new techniques for numerically approximating two-phase flows. Specifically, we present new techniques for treating the viscosity and surface tension terms that appear in the Navier-Stokes equations for incompressible two-phase flow. Our resulting numerical method has the property that results computed using our two-phase algorithm approach the corresponding "one-phase'' algorithm in the limit of zero gas density/viscosity; i.e. the two-phase results approach the one-phase free-boundary results in the limit that the gas is assumed to become a uniform pressure void. By grid convergence checks and comparison with previous experimental data, we More >

Displaying 1-10 on page 1 of 11. Per Page