Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Plasma Surface Modification of Li2TiSiO5 Anode for Lithium-Ion Batteries

    Shangqi Sun1,2,3,*, Lingchao Xiao3, Qifeng Qian3, Yunfeng Deng1

    Energy Engineering, Vol.121, No.10, pp. 2769-2776, 2024, DOI:10.32604/ee.2024.052680 - 11 September 2024

    Abstract Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li2TiSiO5. In this study, Li2TiSiO5 is synthesized by the sol-gel method, and the surface modification of Li2TiSiO5 is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance. The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration. The peak position of the plasma-treated Li2TiSiO5 is shifted to a lower angle, and the shift angle increases with increasing sputtering power. Li2TiSiO5 after 300 W bombardment shows excellent capacity (144.7 mA·hg−1 More >

  • Open Access

    REVIEW

    A Brief Review of Surface Modification of Carbonyl Iron Powders (CIPs) for Magnetorheological Fluid Applications

    THIRUMALAISAMY SURYAPRABHAA, CHUNGHYUN CHOIA, ZUBAIR AHMED CHANDIOB, LAWRENCE ROBERT MSALILWAB, TAEGWANG YUNC,*, JUN YOUNG CHEONGB,*, BYUNGIL HWANGA,*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 191-204, 2023, DOI:10.32381/JPM.2023.40.3-4.5

    Abstract Magnetorheological fluids (MRFs) is a smart fluid system that exhibits swift and reversible alterations in their rheological characteristics when exposed to an external magnetic field. MRFs are used for applications in various areas, including automotive systems, robotics, aerospace, and civil engineering. The performance of MRFs depends on the behavior of the dispersed magnetic particles, necessitating thoughtful consideration of particle traits to optimize fluid performance. Carbonyl Iron Powders (CIPs), high purity iron (>98%) reduced from penta carbonyl iron, are widely employed in MRFs due to their exceptional magnetic characteristics. Nevertheless, the innate surfaces of CIPs tend… More >

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access

    ARTICLE

    The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites

    Ewa Szefer*, Agnieszka Leszczyńska, Edyta Hebda, Krzysztof Pielichowski

    Journal of Renewable Materials, Vol.9, No.6, pp. 1127-1142, 2021, DOI:10.32604/jrm.2021.014584 - 11 March 2021

    Abstract The aim of this work was to use cellulose nanocrystals that were obtained by hydrolysis in phosphoric acid solution and further modified with succinic anhydride in the microwave field for PLA reinforcement. A series of all-bionanocomposites containing unmodified and surface modified cellulose nanocrystals with CNC content in the range of 1–3 %w.t. were obtained by melt blending and tested by XRD, SEM, DSC and DMA to investigate the effect of surface esterification of CNCs on the structure, morphology, dynamic mechanical properties of bionanocomposites, as well as phase transitions of PLA in the presence of cellulosic nanofiller. More > Graphic Abstract

    The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites

  • Open Access

    ARTICLE

    Study of the Superficial Modification of Sisal Fibres with Lignin, and Its Use As a Reinforcement Agent in Cementitious Composites

    Plínio B. Mundim1, Rondinele A. R. Ferreira1, Leila A. C. Motta1, Mariana A. Henrique2, Daniel Pasquini2,*

    Journal of Renewable Materials, Vol.8, No.8, pp. 891-903, 2020, DOI:10.32604/jrm.2020.010655 - 10 July 2020

    Abstract The objective of this work was to evaluate different superficial treatments of sisal fibres employing lignin, and their use as a reinforcement agent in cementitious composites. The treatments consisted of superficially impregnating sisal fibres (S) with organosolv lignin (LO), organosolv lignin and glutaraldehyde (LOG), Kraft lignin (LK) and Kraft lignin and glutaraldehyde (LKG). The fibre modifications were verified by FTIR-ATR and SEM analyzes, and the presence of lignin on the surface of the fibres was evidenced, confirming the effectiveness of the treatments. The mechanical, thermal (by TGA) and water absorption properties of the fibres before… More >

  • Open Access

    ARTICLE

    Study on the Effect of Surface Modification on the Mechanical and Thermal Behaviour of Flax, Sisal and Glass Fiber-Reinforced Epoxy Hybrid Composites

    C. M. Meenakshi, A. Krishnamoorthy*

    Journal of Renewable Materials, Vol.7, No.2, pp. 153-169, 2019, DOI:10.32604/jrm.2019.00046

    Abstract Natural fiber-reinforced hybrid composites can be a better replacement for plastic composites since these plastic composites pose a serious threat to the environment. The aim of this study is to analyze the effect of surface modification of the natural fibers on the mechanical, thermal, hygrothermal, and water absorption behaviors of flax, sisal, and glass fiber-reinforced epoxy hybrid composites. The mechanical properties of alkaline treated sisal and flax fibers were found to increase considerably.Tensile, flexural and impact strength of glass/flax-fiber-reinforced hybrid samples improved by 58%, 36%, and 51%, respectively, after surface alkaline treatment. In addition, the More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF ENHANCED NUCLEATE BOILING HEAT TRANSFER ON UNIFORM AND MODULATED POROUS STRUCTURES

    Calvin Hong Lia, G. P. Petersonb,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3007

    Abstract An experimental investigation of the Critical Heat Flux (CHF) and heat transfer coefficient (HTC) of two-phase heat transfer of de-Ionized (DI) water, pool boiling was conducted using several kinds of sintered copper microparticle porous uniform and modulated structures. The modulated porous structure reached a heat flux of 450 W/cm2 and a heat transfer coefficient of 230,000 W/m2K. The thick and thin uniform porous structures achieved CHFs of 290 W/cm2 and 227 W/cm2 , respectively, and heat transfer coefficients of 118,000 W/m2K and 104,000 W/m2K. The mechanisms for the dramatically improved CHFs and HTCs were identified with assistance of More >

  • Open Access

    ABSTRACT

    The Tribological and Fatigue Properties of Steel modified by Hybrid Surface Modification combining Super Rapid Induction Heating & Quenching and DLC coating

    T. Aizawa1, H. Akebono2, H.Suzuki1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.4, pp. 193-198, 2008, DOI:10.3970/icces.2008.005.193

    Abstract In order to achieve power transmission parts like a compact gearwheel which indicates high performance properties, hybrid surface modification was performed by combining Super Rapid Induction Heating & Quenching(SRIQ) which creates high fatigue strength and Diamond Like Carbon (DLC) coating which are well known for their high hardness, low friction and excellent wear resistance. And, in order to prevent the base material from decreasing its fatigue strength, DLC was coated by using Unbalanced Magnetron Sputtering (UBMS) method which can coat at low temperature. Rotational bending fatigue tests and friction-wear tests were carried out. It was More >

Displaying 1-10 on page 1 of 8. Per Page