Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (496)
  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    ARTICLE

    Melting Flow Analyzation of Radiative Riga Plate Two-Phase Nano-Fluid Across Non-Flatness Plane with Chemical Reaction

    Jupudi Lakshmi Rama Prasad1, F. Mebarek-Oudina2,*, G. Dharmaiah3, Putta Babu Rao4, H. Vaidya5

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1515-1532, 2024, DOI:10.32604/fhmt.2024.057854 - 30 October 2024

    Abstract There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings, making thermo-dynamical modeling an effective tool for estimating the ideal melting point of heat transfer. Under certain assumptions, the present study builds a mathematical model of melting heat transport nanofluid flow of chemical reactions and joule heating. Nanofluid flow is described by higher-order partial non-linear differential equations. Incorporating suitable similarity transformations and dimensionless parameters converts these controlling partial differential equations into the non-linear ordinary differential equations and resulting system of nonlinear equations is established. Plotted graphic visualizations in MATLAB More >

  • Open Access

    ARTICLE

    Nanofluid Heat Transfer in Irregular 3D Surfaces under Magnetohydrodynamics and Multi-Slip Effects

    Mumtaz Khan1,*, Muhammad Shoaib Anwar2, Mudassar Imran3, Amer Rasheed4

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1399-1419, 2024, DOI:10.32604/fhmt.2024.056597 - 30 October 2024

    Abstract This study employs the Buongiorno model to explore nanoparticle migration in a mixed convection second-grade fluid over a slendering (variable thickness) stretching sheet. The convective boundary conditions are applied to the surface. In addition, the analysis has been carried out in the presence of Joule heating, slips effects, thermal radiation, heat generation and magnetohydrodynamic. This study aimed to understand the complex dynamics of these nanofluids under various external influences. The governing model has been developed using the flow assumptions such as boundary layer approximations in terms of partial differential equations. Governing partial differential equations are… More >

  • Open Access

    ARTICLE

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

    Ali M. H. Al-Obaidy*, Ekhlas M. Fayyadh, Amer M. Al-Dabagh

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1421-1442, 2024, DOI:10.32604/fhmt.2024.055063 - 30 October 2024

    Abstract High heat dissipation is required for miniaturization and increasing the power of electronic systems. Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need for moving parts. Many studies have focused on improving heat transfer efficiency during boiling by modifying the surface of the heating element. This paper presents an experimental investigation on improving pool boiling heat transfer using an open microchannel. The primary goal of this work is to investigate the impact of the channel geometry characteristics on boiling heat transfer. Initially, rectangular microchannels were prepared… More > Graphic Abstract

    Effect of the Geometrical Parameter of Open Microchannel on Pool Boiling Enhancement

  • Open Access

    ARTICLE

    Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet

    Can Kang1,*, Shifeng Yan1, Haixia Liu2, Jie Chen2, Kejin Ding3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2431-2442, 2024, DOI:10.32604/fdmp.2024.055688 - 28 October 2024

    Abstract The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mg alloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface. For a certain cavitation number and a given standoff distance, different liquid temperatures were considered. Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphology of the tested specimens. The results show that the cumulative mass loss increases continuously with the liquid temperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds. Increasing More > Graphic Abstract

    Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet

  • Open Access

    ARTICLE

    Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment

    Martha L. Sánchez1,*, G. Capote2

    Journal of Renewable Materials, Vol.12, No.10, pp. 1791-1810, 2024, DOI:10.32604/jrm.2024.055122 - 23 October 2024

    Abstract The construction sector is one of the main sources of pollution, due to high energy consumption and the toxic substances generated during the processing and use of traditional materials. The production of cement, steel, and other conventional materials impacts both ecosystems and human health, increasing the demand for ecological and biodegradable alternatives. In this paper, we analyze the properties of panels made from a combination of plant fibers and castor oil resin, analyzing the viability of their use as construction material. For the research, orthogonal fabrics made with waste plant fibers supplied by a company… More >

  • Open Access

    ARTICLE

    V2I Physical Layer Security Beamforming with Antenna Hardware Impairments under RIS Assistance

    Zerong Tang, Tiecheng Song*, Jing Hu

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1835-1854, 2024, DOI:10.32604/cmc.2024.056983 - 15 October 2024

    Abstract The Internet of Vehicles (IoV) will carry a large amount of security and privacy-related data, which makes the secure communication between the IoV terminals increasingly critical. This paper studies the joint beamforming for physical-layer security transmission in the coexistence of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication with Reconfigurable Intelligent Surface (RIS) assistance, taking into account hardware impairments. A communication model for physical-layer security transmission is established when the eavesdropping user is present and the base station antenna has hardware impairments assisted by RIS. Based on this model, we propose to maximize the V2I physical-layer security… More >

  • Open Access

    PROCEEDINGS

    Phase Diagram of Impacting Nanodroplets on Mesh Surfaces

    Qiang Ma1,2,3, Tuan Tran2,*, Xiaodong Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011051

    Abstract Controlling dynamics of impacting droplets on meshes is significantly important, which attracted a lot of attention because of its great potential applications in liquid separation, self-cleaning, and water harvesting [1-3], yet the underlying physical mechanisms are not entirely revealed. Here, the impact dynamics of a nanodroplet on mesh surfaces with different wettability are studied through molecular dynamics (MD) simulations. Due to scale effects between the nano and macroscale, the impacting nanodroplets exhibit some unique dynamic characteristics [4-7]. On a superhydrophobic mesh surface, when varying the impact conditions of nanodroplets, different outcomes can occur: (i) at… More >

  • Open Access

    ARTICLE

    A Fast and Memory-Efficient Direct Rendering Method for Polynomial-Based Implicit Surfaces

    Jiayu Ren1,*, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1033-1046, 2024, DOI:10.32604/cmes.2024.054238 - 27 September 2024

    Abstract Three-dimensional surfaces are typically modeled as implicit surfaces. However, direct rendering of implicit surfaces is not simple, especially when such surfaces contain finely detailed shapes. One approach is ray-casting, where the field of the implicit surface is assumed to be piecewise polynomials defined on the grid of a rectangular domain. A critical issue for direct rendering based on ray-casting is the computational cost of finding intersections between surfaces and rays. In particular, ray-casting requires many function evaluations along each ray, severely slowing the rendering speed. In this paper, a method is proposed to achieve direct More >

  • Open Access

    ARTICLE

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

    Samar El-Mekkawi1, Wafaa Abou-Elseoud2, Shaimaa Fadel2, Enas Hassan2, Mohammad Hassan2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1573-1591, 2024, DOI:10.32604/jrm.2024.053589 - 25 September 2024

    Abstract Recycling of paper sludge waste is crucial for establishing a sustainable green industry. This waste contains valuable sugars that can be converted into important chemicals such as ethanol, poly hydroxybutyrate, and lactic acid. However, the main challenge in obtaining sugars in high yield from paper sludge is the high crystallinity of cellulose, which hinders hydrolysis. To address this, pretreatment using phosphoric acid was optimized using response surface methodology to facilitate cellulose hydrolysis with minimal energy and chemicals. The created prediction model using the response surface method considered factors such as acid concentration (ranging from 60%… More > Graphic Abstract

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

Displaying 1-10 on page 1 of 496. Per Page