Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Nonlinear Dynamics of Nervous Stomach Model Using Supervised Neural Networks

    Zulqurnain Sabir1, Manoj Gupta2, Muhammad Asif Zahoor Raja3, N. Seshagiri Rao4, Muhammad Mubashar Hussain5, Faisal Alanazi6, Orawit Thinnukool7, Pattaraporn Khuwuthyakorn7,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1627-1644, 2022, DOI:10.32604/cmc.2022.021462 - 24 February 2022

    Abstract The purpose of the current investigations is to solve the nonlinear dynamics based on the nervous stomach model (NSM) using the supervised neural networks (SNNs) along with the novel features of Levenberg-Marquardt backpropagation technique (LMBT), i.e., SNNs-LMBT. The SNNs-LMBT is implemented with three different types of sample data, authentication, testing and training. The ratios for these statistics to solve three different variants of the nonlinear dynamics of the NSM are designated 75% for training, 15% for validation and 10% for testing, respectively. For the numerical measures of the nonlinear dynamics of the NSM, the Runge-Kutta More >

  • Open Access

    ARTICLE

    Numerical Solutions of a Novel Designed Prevention Class in the HIV Nonlinear Model

    Zulqurnain Sabir1, Muhammad Umar1, Muhammad Asif Zahoor Raja2,*, Dumitru Baleanu3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 227-251, 2021, DOI:10.32604/cmes.2021.016611 - 24 August 2021

    Abstract The presented research aims to design a new prevention class (P) in the HIV nonlinear system, i.e., the HIPV model. Then numerical treatment of the newly formulated HIPV model is portrayed handled by using the strength of stochastic procedure based numerical computing schemes exploiting the artificial neural networks (ANNs) modeling legacy together with the optimization competence of the hybrid of global and local search schemes via genetic algorithms (GAs) and active-set approach (ASA), i.e., GA-ASA. The optimization performances through GA-ASA are accessed by presenting an error-based fitness function designed for all the classes of the More >

Displaying 1-10 on page 1 of 2. Per Page