Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    PSMFNet: Lightweight Partial Separation and Multiscale Fusion Network for Image Super-Resolution

    Shuai Cao1,3, Jianan Liang1,2,*, Yongjun Cao1,2,3,4, Jinglun Huang1,4, Zhishu Yang1,4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1491-1509, 2024, DOI:10.32604/cmc.2024.049314 - 15 October 2024

    Abstract The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution (SISR) research. However, the high computational demands of most SR techniques hinder their applicability to edge devices, despite their satisfactory reconstruction performance. These methods commonly use standard convolutions, which increase the convolutional operation cost of the model. In this paper, a lightweight Partial Separation and Multiscale Fusion Network (PSMFNet) is proposed to alleviate this problem. Specifically, this paper introduces partial convolution (PConv), which reduces the redundant convolution operations throughout the model by separating some of the features of… More >

  • Open Access

    ARTICLE

    Pyramid Separable Channel Attention Network for Single Image Super-Resolution

    Congcong Ma1,3, Jiaqi Mi2, Wanlin Gao1,3, Sha Tao1,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4687-4701, 2024, DOI:10.32604/cmc.2024.055803 - 12 September 2024

    Abstract Single Image Super-Resolution (SISR) technology aims to reconstruct a clear, high-resolution image with more information from an input low-resolution image that is blurry and contains less information. This technology has significant research value and is widely used in fields such as medical imaging, satellite image processing, and security surveillance. Despite significant progress in existing research, challenges remain in reconstructing clear and complex texture details, with issues such as edge blurring and artifacts still present. The visual perception effect still needs further enhancement. Therefore, this study proposes a Pyramid Separable Channel Attention Network (PSCAN) for the… More >

  • Open Access

    ARTICLE

    AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms

    Lirong Yin1, Lei Wang1, Siyu Lu2,*, Ruiyang Wang2, Haitao Ren2, Ahmed AlSanad3, Salman A. AlQahtani3, Zhengtong Yin4, Xiaolu Li5, Wenfeng Zheng3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2315-2347, 2024, DOI:10.32604/cmes.2024.050853 - 08 July 2024

    Abstract At present, super-resolution algorithms are employed to tackle the challenge of low image resolution, but it is difficult to extract differentiated feature details based on various inputs, resulting in poor generalization ability. Given this situation, this study first analyzes the features of some feature extraction modules of the current super-resolution algorithm and then proposes an adaptive feature fusion block (AFB) for feature extraction. This module mainly comprises dynamic convolution, attention mechanism, and pixel-based gating mechanism. Combined with dynamic convolution with scale information, the network can extract more differentiated feature information. The introduction of a channel More >

  • Open Access

    ARTICLE

    Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution

    Israa Ismail1,*, Ghada Eltaweel1, Mohamed Meselhy Eltoukhy1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3193-3209, 2024, DOI:10.32604/cmc.2023.043873 - 15 May 2024

    Abstract Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs. Super-resolution is of paramount importance in the context of remote sensing, satellite, aerial, security and surveillance imaging. Super-resolution remote sensing imagery is essential for surveillance and security purposes, enabling authorities to monitor remote or sensitive areas with greater clarity. This study introduces a single-image super-resolution approach for remote sensing images, utilizing deep shearlet residual learning in the shearlet transform domain, and incorporating the Enhanced Deep Super-Resolution network (EDSR). Unlike conventional approaches that estimate residuals between high and… More >

  • Open Access

    ARTICLE

    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510 - 25 April 2024

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

  • Open Access

    ARTICLE

    Learning Epipolar Line Window Attention for Stereo Image Super-Resolution Reconstruction

    Xue Li, Hongying Zhang*, Zixun Ye, Xiaoru Huang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2847-2864, 2024, DOI:10.32604/cmc.2024.047093 - 27 February 2024

    Abstract Transformer-based stereo image super-resolution reconstruction (Stereo SR) methods have significantly improved image quality. However, existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information. To address these challenges, this paper introduces a novel epipolar line window attention stereo image super-resolution network (EWASSR). For detail feature restoration, we design a feature extractor based on Transformer and convolutional neural network (CNN), which consists of (shifted) window-based self-attention ((S)W-MSA) and feature distillation and enhancement blocks (FDEB). This combination effectively… More >

  • Open Access

    ARTICLE

    Accelerate Single Image Super-Resolution Using Object Detection Process

    Xiaolin Xing1, Shujie Yang1,*, Bohan Li2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1585-1597, 2023, DOI:10.32604/cmc.2023.035415 - 30 August 2023

    Abstract Image Super-Resolution (SR) research has achieved great success with powerful neural networks. The deeper networks with more parameters improve the restoration quality but add the computation complexity, which means more inference time would be cost, hindering image SR from practical usage. Noting the spatial distribution of the objects or things in images, a two-stage local objects SR system is proposed, which consists of two modules, the object detection module and the SR module. Firstly, You Only Look Once (YOLO), which is efficient in generic object detection tasks, is selected to detect the input images for More >

  • Open Access

    ARTICLE

    3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution

    Mohd Anul Haq1,*, Siwar Ben Hadj Hassine2, Sharaf J. Malebary3, Hakeem A. Othman4, Elsayed M. Tag-Eldin5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2689-2705, 2023, DOI:10.32604/csse.2023.039904 - 28 July 2023

    Abstract Hyperspectral images can easily discriminate different materials due to their fine spectral resolution. However, obtaining a hyperspectral image (HSI) with a high spatial resolution is still a challenge as we are limited by the high computing requirements. The spatial resolution of HSI can be enhanced by utilizing Deep Learning (DL) based Super-resolution (SR). A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI, without losing the spectral content. The 3D-CNNHSR model was tested for the Hyperion HSI. The pre-processing of the HSI was done before applying the SR model so… More >

  • Open Access

    ARTICLE

    Classifying Hematoxylin and Eosin Images Using a Super-Resolution Segmentor and a Deep Ensemble Classifier

    P. Sabitha*, G. Meeragandhi

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1983-2000, 2023, DOI:10.32604/iasc.2023.034402 - 21 June 2023

    Abstract Developing an automatic and credible diagnostic system to analyze the type, stage, and level of the liver cancer from Hematoxylin and Eosin (H&E) images is a very challenging and time-consuming endeavor, even for experienced pathologists, due to the non-uniform illumination and artifacts. Albeit several Machine Learning (ML) and Deep Learning (DL) approaches are employed to increase the performance of automatic liver cancer diagnostic systems, the classification accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations. In this work, we present a new Ensemble Classifier (hereafter called ECNet)… More >

  • Open Access

    ARTICLE

    Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution

    Kun Yang1,2, Lei Zhao1, Xianghui Wang1, Mingyang Zhang1, Linyan Xue1,2, Shuang Liu1,2, Kun Liu1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5159-5176, 2023, DOI:10.32604/cmc.2023.036401 - 29 April 2023

    Abstract The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose… More >

Displaying 1-10 on page 1 of 31. Per Page