Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption: Experimental Analysis and Molecular Simulation

    Nannan Liu*, Hengchen Qi, Hui Xu, Yanfeng He

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1731-1741, 2024, DOI:10.32604/fdmp.2024.048354 - 06 August 2024

    Abstract Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks. Nevertheless, the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown. This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water. The problem is addressed in the framework of molecular dynamics simulation (Material Studio software) and experiments. The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into More > Graphic Abstract

    Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption: Experimental Analysis and Molecular Simulation

  • Open Access

    ARTICLE

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

    Qingran Meng1,2, Wenwen Xu2, Zuobing Xiao2, Qinfei Ke1,2,*, Xingran Kou1,2,*

    Journal of Renewable Materials, Vol.12, No.4, pp. 629-641, 2024, DOI:10.32604/jrm.2023.029182 - 12 June 2024

    Abstract Bio-based cyclodextrins (CDs) are a common research object in supramolecular chemistry. The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules. The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions. The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle, but also beneficial to its application. In the present study, the self-assembly behavior of epoxy-β-cyclodextrin (EP-β-CD) and mixed anionic and cationic surfactant system (sodium dodecyl sulfate/dodecyltrimethylammonium bromide, SDS/DTAB) in aqueous solution was studied. Morphological… More > Graphic Abstract

    Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature

  • Open Access

    REVIEW

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

    Xiufeng Zhu1,2, Jingying Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 671-692, 2024, DOI:10.32604/fdmp.2023.045260 - 28 March 2024

    Abstract

    SR-AOP (sulfate radical advanced oxidation process) is a novel water treatment method able to eliminate refractory organic pollutants. Hydrodynamic cavitation (HC) is a novel green technology, that can effectively produce strong oxidizing sulfate radicals. This paper presents a comprehensive review of the research advancements in these fields and a critical discussion of the principal factors influencing HC-enhanced SR-AOP and the mechanisms of synergistic degradation. Furthermore, some insights into the industrial application of HC/PS are also provided. Current research shows that this technology is feasible at the laboratory stage, but its application on larger scales requires

    More > Graphic Abstract

    Hydrodynamic Cavitation Enhanced SR-Aops Degradation of Organic Pollutants in Water: A Review

  • Open Access

    ARTICLE

    Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar

    Yadong Bian1, Xuan Qiu1, Jihui Zhao2,*, Zhong Li2, Jiana Ouyang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 45-58, 2024, DOI:10.32604/fdmp.2023.029299 - 08 November 2023

    Abstract In this paper, the durability of cement mortar prepared with a recycled-concrete fine powder (RFP) was examined; including the analysis of a variety of aspects, such as the carbonization, sulfate attack and chloride ion erosion resistance. The results indicate that the influence of RFP on these three aspects is different. The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10% RFP decreased by 13.3% and 28.19%. With a further increase in the RFP content, interconnected pores formed between the RFP particles, leading to an acceleration of the penetration rate of CO2 More > Graphic Abstract

    Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar

  • Open Access

    ARTICLE

    Targeting LncRNA LLNLR-299G3.1 with antisense oligonucleotide inhibits malignancy of esophageal squamous cell carcinoma cells in vitro and in vivo

    LI TIAN1,#, YONGYI HUANG1,#, BAOZHEN ZHANG2,#, YI SONG1,#, LIN YANG3, QIANQIAN CHEN1, ZHENG WANG3, YILING WANG1, QIHAN HE1, WENHAN YANG1, SHUYONG YU4, TIANYU LU5, ZICHEN LIU1, KAIPING GAO1,*, XIUJUN FAN2,*, JIAN SONG4,*, RIHONG ZHAI1,*

    Oncology Research, Vol.31, No.4, pp. 463-479, 2023, DOI:10.32604/or.2023.028791 - 25 June 2023

    Abstract Accumulating evidence has indicated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of cancers, including esophageal squamous cell carcinoma (ESCC). However, the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge. By RNA-sequencing analysis, we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA. LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion. Silencing of LLNLR-299G3.1 with ASO (antisense oligonucleotide) resulted in opposite effects. Mechanistically, LLNLR-299G3.1 bound to cancer-associated RNA binding proteins and regulated the expression… More >

  • Open Access

    ARTICLE

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

    Medta Boupan1,2, Kanyapak Prompang1, Achiraya Chompunuch1, Piwat Boonma1, Arthit Neramittagapong1,2,3,4, Somnuk Theerakulpisut5, Sutasinee Neramittagapong1,2,3,*

    Journal of Renewable Materials, Vol.11, No.7, pp. 2985-3000, 2023, DOI:10.32604/jrm.2023.026397 - 05 June 2023

    Abstract Isosorbide is a multi-purpose chemical that can be produced from renewable resources. Specifically, it has been investigated as a replacement for toxic bisphenol A (BPA) in the production of polycarbonate (PC). In this study, the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium (IV) sulfate (300°C, 400°C, 450°C, 500°C, and 650°C) was investigated. The reaction occurred in a high-pressure reactor containing nitrogen gas. Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst. The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate More > Graphic Abstract

    Role of Calcination Temperature on Isosorbide Production from Sorbitol Dehydration over the Catalyst Derived from Ce(IV) Sulfate

  • Open Access

    ARTICLE

    Durability of Green Concrete in Severe Environment

    Yonggan Yang1,2,3,4, Zihao Kang1, Binggen Zhan1,3,*, Peng Gao1,3,*, Qijun Yu1, Yanlai Xiong4, Jingfeng Wang1,3, Yunsheng Zhang5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1895-1910, 2023, DOI:10.32604/jrm.2023.025059 - 01 December 2022

    Abstract In this paper, the effects of different mineral admixtures and sulfate solution types on the appearance, mass change rate, relative dynamic elastic modulus, and corrosion resistance coefficient of concrete were systematically studied. X-ray Diffraction (XRD), Mercury Intrusion Porosimetry (MIP), Scanning Electron Microscopy (SEM), and X-ray Computed Tomography (X-CT) were used to explore and analyze the changes in the microstructure and the corrosion products of concrete in the sulfate solution. The results show that the existence of magnesium ions accelerates concrete deterioration. There is a critical dosage of fly ash for magnesium sulfate resistance of concrete.… More > Graphic Abstract

    Durability of Green Concrete in Severe Environment

  • Open Access

    ARTICLE

    Improvement of Cemented Gangue Backfill Material with Barium Hydroxide in Acid Mine Water

    Xiaoli Ye1,2, Yuxia Guo1,2,*, Peng Wang1,2, Yonghui Zhao1,2, Wenshuo Xie1,2, Guorui Feng1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1451-1467, 2023, DOI:10.32604/jrm.2022.023528 - 31 October 2022

    Abstract As a kind of green concrete, the mechanical properties and durability of cemented gangue backfill material (CGBM) will be affected if they are in acid mine water with sulfate ions in the long term. To improve the performance of CGBM in acid mine water with sulfate ions, CGBM specimens with different doses of barium hydroxide were immersed in sulfuric acid solutions of different concentrations for 270 days. The changes of mass, ultrasonic pulse velocity (UPV) and compressive strength of the specimens at different ages were analyzed. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were… More > Graphic Abstract

    Improvement of Cemented Gangue Backfill Material with Barium Hydroxide in Acid Mine Water

  • Open Access

    ARTICLE

    Effect of Dry-Wet Cycles on the Transport and Mechanical Properties of Cement Mortar Subjected to Sulfate Attack

    Wei Chen1,*, Weijie Shan1, Yue Liang1, Frederic Skoczylas2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 679-696, 2023, DOI:10.32604/fdmp.2022.021249 - 29 September 2022

    Abstract This study deals with the analysis of the detrimental effects of a “sulfate attack” on cement mortar for different dry-wet cycles. The mass loss, tensile strength, and gas permeability coefficient were determined and analyzed under different exposure conditions. At the same time, nitrogen adsorption (NAD), scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques were used to analyze the corresponding variations in the microstructure and the corrosion products. The results show that certain properties of the cement mortar evolve differently according to the durations of the dry-wet cycles and that some damage is caused to More >

  • Open Access

    ARTICLE

    Transcriptome Analysis and Physiological Responses of Economic Macroalga Gracilariopsis lemaneiformis under Sulfate Deficiency

    Haojie Jia1,2, Hong Du1,2,*, Muhmmad Aslam1,2, Tangcheng Li1,2, Canqi Zheng1,2, Xihui Xie1,2, Nan Huang1,2, Honghao Liang1,2, Pengbing Pei1,2, Ping Li1,2, Weizhou Chen1,2, Xiaojuan Liu1,2

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 91-110, 2023, DOI:10.32604/phyton.2022.022663 - 06 September 2022

    Abstract Sulfur is an essential macronutrient for the growth of all photosynthetic organisms and plays important roles in different metabolic pathways. However, sulfur metabolism and its related research on macroalgae with important ecological value is rather limited. In this study, marine ecological valued macroalga Gracilariopsis lemaneiformis was used to study the general physiological responses and transcriptome profiling under the sulfate deficiency. The relative growth rate of algae under sulfate deficiency was statistically significantly lower than that of control after 6 days. However, no significant differences were observed in the pigments content and Fv/Fm value, indicating that the… More >

Displaying 1-10 on page 1 of 21. Per Page