Qing Zhu1, Denghui Guo1, Rui Ruan1, Zhidong Chai1, Chaoqun Wang2, Zhiwen Guan2,*
Energy Engineering, Vol.122, No.8, pp. 3133-3154, 2025, DOI:10.32604/ee.2025.063165
- 24 July 2025
Abstract This study presents an emergency control method for sub-synchronous oscillations in wind power grid-connected systems based on transfer learning, addressing the issue of insufficient generalization ability of traditional methods in complex real-world scenarios. By combining deep reinforcement learning with a transfer learning framework, cross-scenario knowledge transfer is achieved, significantly enhancing the adaptability of the control strategy. First, a sub-synchronous oscillation emergency control model for the wind power grid integration system is constructed under fixed scenarios based on deep reinforcement learning. A reward evaluation system based on the active power oscillation pattern of the system is… More >