Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    ABMRF: An Ensemble Model for Author Profiling Based on Stylistic Features Using Roman Urdu

    Aiman1, Muhammad Arshad1, Bilal Khan1, Khalil Khan2, Ali Mustafa Qamar3,*, Rehan Ullah Khan4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 301-317, 2024, DOI:10.32604/iasc.2024.045402 - 21 May 2024

    Abstract This study explores the area of Author Profiling (AP) and its importance in several industries, including forensics, security, marketing, and education. A key component of AP is the extraction of useful information from text, with an emphasis on the writers’ ages and genders. To improve the accuracy of AP tasks, the study develops an ensemble model dubbed ABMRF that combines AdaBoostM1 (ABM1) and Random Forest (RF). The work uses an extensive technique that involves text message dataset pretreatment, model training, and assessment. To evaluate the effectiveness of several machine learning (ML) algorithms in classifying age… More >

  • Open Access

    ARTICLE

    Author’s Age and Gender Prediction on Hotel Review Using Machine Learning Techniques

    Muhammad Hood Khan1, Bilal Khan1,*, Saifullah Jan1, Muhammad Imran Chughtai2

    Journal on Big Data, Vol.5, pp. 41-56, 2023, DOI:10.32604/jbd.2022.044060 - 17 November 2023

    Abstract Author’s Profile (AP) may only be displayed as an article, similar to text collection of material, and must differentiate between gender, age, education, occupation, local language, and relative personality traits. In several information-related fields, including security, forensics, and marketing, and medicine, AP prediction is a significant issue. For instance, it is important to comprehend who wrote the harassing communication. In essence, from a marketing perspective, businesses will get to know one another through examining items and websites on the internet. Accordingly, they will direct their efforts towards a certain gender or age restriction based on… More >

  • Open Access

    ARTICLE

    Novel Machine Learning–Based Approach for Arabic Text Classification Using Stylistic and Semantic Features

    Fethi Fkih1,2,*, Mohammed Alsuhaibani1, Delel Rhouma1,2, Ali Mustafa Qamar1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5871-5886, 2023, DOI:10.32604/cmc.2023.035910 - 29 April 2023

    Abstract Text classification is an essential task for many applications related to the Natural Language Processing domain. It can be applied in many fields, such as Information Retrieval, Knowledge Extraction, and Knowledge modeling. Even though the importance of this task, Arabic Text Classification tools still suffer from many problems and remain incapable of responding to the increasing volume of Arabic content that circulates on the web or resides in large databases. This paper introduces a novel machine learning-based approach that exclusively uses hybrid (stylistic and semantic) features. First, we clean the Arabic documents and translate them… More >

Displaying 1-10 on page 1 of 3. Per Page