Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911 - 24 April 2024

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding More >

  • Open Access

    ARTICLE

    MDNN: Predicting Student Engagement via Gaze Direction and Facial Expression in Collaborative Learning

    Yi Chen1,*, Jin Zhou1, Qianting Gao2, Jing Gao1, Wei Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 381-401, 2023, DOI:10.32604/cmes.2023.023234 - 05 January 2023

    Abstract Prediction of students’ engagement in a Collaborative Learning setting is essential to improve the quality of learning. Collaborative learning is a strategy of learning through groups or teams. When cooperative learning behavior occurs, each student in the group should participate in teaching activities. Researchers showed that students who are actively involved in a class gain more. Gaze behavior and facial expression are important nonverbal indicators to reveal engagement in collaborative learning environments. Previous studies require the wearing of sensor devices or eye tracker devices, which have cost barriers and technical interference for daily teaching practice. More >

  • Open Access

    ARTICLE

    Developing Engagement in the Learning Management System Supported by Learning Analytics

    Suraya Hamid1, Shahrul Nizam Ismail1, Muzaffar Hamzah2,*, Asad W. Malik3

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 335-350, 2022, DOI:10.32604/csse.2022.021927 - 02 December 2021

    Abstract Learning analytics is an emerging technique of analysing student participation and engagement. The recent COVID-19 pandemic has significantly increased the role of learning management systems (LMSs). LMSs previously only complemented face-to-face teaching, something which has not been possible between 2019 to 2020. To date, the existing body of literature on LMSs has not analysed learning in the context of the pandemic, where an LMS serves as the only interface between students and instructors. Consequently, productive results will remain elusive if the key factors that contribute towards engaging students in learning are not first identified. Therefore, More >

  • Open Access

    ARTICLE

    Exploring Students Engagement Towards the Learning Management System (LMS) Using Learning Analytics

    Shahrul Nizam Ismail1, Suraya Hamid1,*, Muneer Ahmad1, A. Alaboudi2, Nz Jhanjhi3

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 73-87, 2021, DOI:10.32604/csse.2021.015261 - 05 February 2021

    Abstract Learning analytics is a rapidly evolving research discipline that uses the insights generated from data analysis to support learners as well as optimize both the learning process and environment. This paper studied students’ engagement level of the Learning Management System (LMS) via a learning analytics tool, student’s approach in managing their studies and possible learning analytic methods to analyze student data. Moreover, extensive systematic literature review (SLR) was employed for the selection, sorting and exclusion of articles from diverse renowned sources. The findings show that most of the engagement in LMS are driven by educators. More >

Displaying 1-10 on page 1 of 4. Per Page