Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,365)
  • Open Access

    ARTICLE

    Multivariate Data Anomaly Detection Based on Graph Structure Learning

    Haoxiang Wen1, Zhaoyang Wang1, Zhonglin Ye1,*, Haixing Zhao1, Maosong Sun2

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074410 - 29 January 2026

    Abstract Multivariate anomaly detection plays a critical role in maintaining the stable operation of information systems. However, in existing research, multivariate data are often influenced by various factors during the data collection process, resulting in temporal misalignment or displacement. Due to these factors, the node representations carry substantial noise, which reduces the adaptability of the multivariate coupled network structure and subsequently degrades anomaly detection performance. Accordingly, this study proposes a novel multivariate anomaly detection model grounded in graph structure learning. Firstly, a recommendation strategy is employed to identify strongly coupled variable pairs, which are then used More >

  • Open Access

    ARTICLE

    Optimization of Truss Structures Using Nature-Inspired Algorithms with Frequency and Stress Constraints

    Sanjog Chhetri Sapkota1,2, Liborio Cavaleri3, Ajaya Khatri4, Siddhi Pandey5, Satish Paudel6, Panagiotis G. Asteris7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069691 - 29 January 2026

    Abstract Optimization is the key to obtaining efficient utilization of resources in structural design. Due to the complex nature of truss systems, this study presents a method based on metaheuristic modelling that minimises structural weight under stress and frequency constraints. Two new algorithms, the Red Kite Optimization Algorithm (ROA) and Secretary Bird Optimization Algorithm (SBOA), are utilized on five benchmark trusses with 10, 18, 37, 72, and 200-bar trusses. Both algorithms are evaluated against benchmarks in the literature. The results indicate that SBOA always reaches a lighter optimal. Designs with reducing structural weight ranging from 0.02%… More >

  • Open Access

    SHORT COMMUNICATION

    RNF213 Formed and Decorated Membrane-Based Structures in U-2 OS Cells

    TOSHIYUKI HABU*

    BIOCELL, Vol.50, No.1, 2026, DOI:10.32604/biocell.2025.071798 - 23 January 2026

    Abstract RING protein 213 (RNF213), the susceptibility gene for Moyamoya disease (MMD), possesses two active AAA+ ATPase (ATPases Associated with diverse cellular Activities) modules, a RING, and RNF213-ZNFX1 finger (RZ finger) domains. Several RNF213 variants have been reported in MMD patients, including the p.R4810K variant (rs112735431), which is a founder polymorphism associated with MMD in East Asia. To elucidate the function of RNF213 and its variant, we investigated the localization of RNF213 and the R4810K variant in this study. RNF213 induced circular hole structures near the nucleus, similar to lipid droplets (LDs), in U-2 OS cells. More >

  • Open Access

    ARTICLE

    3D Photogrammetric Modelling for Digital Twin Development: Accuracy Assessment Using UAV Multi-Altitude Imaging

    Nur Afikah Juhari, Khairul Nizam Tahar*

    Revue Internationale de Géomatique, Vol.35, pp. 1-11, 2026, DOI:10.32604/rig.2026.070991 - 19 January 2026

    Abstract The use of Unmanned Aerial Vehicles (UAVs) in photogrammetry has grown rapidly due to enhanced flight stability, high-resolution imaging, and advanced Structure from Motion (SfM) algorithms. This study investigates the potential of UAVs as a cost-effective alternative to Terrestrial Laser Scanners (TLS) for 3D building reconstruction. A 3D model of Bangunan Sarjana was generated in Agisoft Metashape Professional v.2.0.2 using 492 aerial images captured at flying altitudes of 40, 50, and 60 m. Ground control points were established using GNSS (RTK-VRS), and Total Station measurements were employed for accuracy validation. The results indicate that the 60 More >

  • Open Access

    ARTICLE

    MRFNet: A Progressive Residual Fusion Network for Blind Multiscale Image Deblurring

    Wang Zhang1,#, Haozhuo Cao2,#, Qiangqiang Yao1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072948 - 12 January 2026

    Abstract Recent advances in deep learning have significantly improved image deblurring; however, existing approaches still suffer from limited global context modeling, inadequate detail restoration, and poor texture or edge perception, especially under complex dynamic blur. To address these challenges, we propose the Multi-Resolution Fusion Network (MRFNet), a blind multi-scale deblurring framework that integrates progressive residual connectivity for hierarchical feature fusion. The network employs a three-stage design: (1) TransformerBlocks capture long-range dependencies and reconstruct coarse global structures; (2) Nonlinear Activation Free Blocks (NAFBlocks) enhance local detail representation and mid-level feature fusion; and (3) an optimized residual subnetwork… More >

  • Open Access

    ARTICLE

    ProRE: A Protocol Message Structure Reconstruction Method Based on Execution Slice Embedding

    Yuyao Huang, Hui Shu, Fei Kang*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071552 - 12 January 2026

    Abstract Message structure reconstruction is a critical task in protocol reverse engineering, aiming to recover protocol field structures without access to source code. It enables important applications in network security, including malware analysis and protocol fuzzing. However, existing methods suffer from inaccurate field boundary delineation and lack hierarchical relationship recovery, resulting in imprecise and incomplete reconstructions. In this paper, we propose ProRE, a novel method for reconstructing protocol field structures based on program execution slice embedding. ProRE extracts code slices from protocol parsing at runtime, converts them into embedding vectors using a data flow-sensitive assembly language model, More >

  • Open Access

    ARTICLE

    Task-Structured Curriculum Learning for Multi-Task Distillation: Enhancing Step-by-Step Knowledge Transfer in Language Models

    Ahmet Ezgi1, Aytuğ Onan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071301 - 12 January 2026

    Abstract Knowledge distillation has become a standard technique for compressing large language models into efficient student models, but existing methods often struggle to balance prediction accuracy with explanation quality. Recent approaches such as Distilling Step-by-Step (DSbS) introduce explanation supervision, yet they apply it in a uniform manner that may not fully exploit the different learning dynamics of prediction and explanation. In this work, we propose a task-structured curriculum learning (TSCL) framework that structures training into three sequential phases: (i) prediction-only, to establish stable feature representations; (ii) joint prediction–explanation, to align task outputs with rationale generation; and (iii)… More >

  • Open Access

    ARTICLE

    Block-Wise Sliding Recursive Wavelet Transform and Its Application in Real-Time Vehicle-Induced Signal Separation

    Jie Li1, Nan An2,3, Youliang Ding2,3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072361 - 08 January 2026

    Abstract Vehicle-induced response separation is a crucial issue in structural health monitoring (SHM). This paper proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements of monitoring data. To extend the separation target from a fixed dataset to a continuously updating data stream, a block-wise sliding framework is first developed. This framework is further optimized considering the characteristics of real-time data streams, and its advantage in computational efficiency is theoretically demonstrated. During the decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce algorithmic complexity. In addition, a… More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

    Hüseyin Bilgin*, Bredli Plaku

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071007 - 08 January 2026

    Abstract Nonlinear static procedures are widely adopted in structural engineering practice for seismic performance assessment due to their simplicity and computational efficiency. However, their reliability depends heavily on how the nonlinear behaviour of structural components is represented. The recent earthquakes in Albania (2019) and Türkiye (2023) have underscored the need for accurate assessment techniques, particularly for older reinforced concrete buildings with poor detailing. This study quantifies the discrepancies between default and user-defined component modelling in pushover analysis of pre-modern reinforced concrete structures, analysing two representative low- and mid-rise reinforced concrete frame buildings. The lumped plasticity approach… More > Graphic Abstract

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

Displaying 1-10 on page 1 of 1365. Per Page