Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Uncertainty Quantification of Complex Engineering Structures Using PCE-HDMR

    Xinxin Yue1, Jian Zhang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011344

    Abstract The "curse of dimensionality" faced by high-dimensional complex engineering problems can be tackled by a set of quantitative model evaluation and analysis tools named high-dimensional model representation (HDMR) [1,2], which has attracted much attention from researchers in various fields, such as global sensitivity analysis (GSA) [3], structural reliability analysis (SRA) [4], CFD uncertainty quantification [5] and so on [6]. In this paper, a new method for uncertainty quantification is proposed. Firstly, PCE-HDMR for SRA is developed by taking advantage of the accuracy and efficiency of PCE-HDMR for modeling high-dimensional problems [7]. Secondly, the formulas for… More >

  • Open Access

    ARTICLE

    A Moving Kriging Interpolation Response Surface Method for Structural Reliability Analysis

    W. Zhao1,2, J.K. Liu3, X.Y. Li2, Q.W. Yang4, Y.Y. Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 469-488, 2013, DOI:10.3970/cmes.2013.093.469

    Abstract In order to obtain reliable structural design, it is of extreme importance to evaluate the failure probability, safety levels of structure (reliability analysis) and the effect of a change in a variable parameter on structural safety (sensitivity analysis) when uncertainties are considered. With a computationally cheaper approximation of the limit state function, various response surface methods (RSMs) have emerged as a convenient tool to solve this especially for complex problems. However, the traditional RSMs may produce large errors in some conditions especially for those highly non-linear limit state functions. Instead of the traditional least squares… More >

  • Open Access

    ARTICLE

    A Structural Reliability Analysis Method Based on Radial Basis Function

    M. Q. Chau1,2, X. Han1, Y. C. Bai1, C. Jiang1

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 128-142, 2012, DOI:10.32604/cmc.2012.027.128

    Abstract The first-order reliability method (FORM) is one of the most widely used structural reliability analysis techniques due to its simplicity and efficiency. However, direct using FORM seems disability to work well for complex problems, especially related to high-dimensional variables and computation intensive numerical models. To expand the applicability of the FORM for more practical engineering problems, a response surface (RS) approach based FORM is proposed for structural reliability analysis. The radial basis function (RBF) is employed to approximate the implicit limit-state functions combined with Latin Hypercube Sampling (LHS) strategy. To guarantee the numerical stability, the More >

  • Open Access

    ARTICLE

    New Optimization Algorithms for Structural Reliability Analysis

    S.R. Santos1, L.C. Matioli2, A.T. Beck3

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.1, pp. 23-56, 2012, DOI:10.3970/cmes.2012.083.023

    Abstract Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented.… More >

Displaying 1-10 on page 1 of 4. Per Page