Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations

    Yajing Ma1,2,3, Gulila Altenbek1,2,3,*, Yingxia Yu1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2023.045486 - 30 January 2024

    Abstract Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events, we propose an Independent Recurrent Temporal Graph Convolution Networks (IndRT-GCNets) framework to efficiently and accurately capture event attribute information. The framework models the knowledge graph sequences to learn the evolutionary representations of entities and relations within each period. Firstly, by utilizing the temporal graph convolution module in the evolutionary representation unit, the framework captures the structural dependency relationships within the knowledge graph in each period. Meanwhile, to achieve better event… More >

Displaying 1-10 on page 1 of 1. Per Page