Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition

    Azad Hussain1, Saira Raiz1, Ali Hassan1,2,*, Mohamed R. Ali3, Abdulkafi Mohammed Saeed4

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 433-453, 2024, DOI:10.32604/fhmt.2024.044121 - 20 May 2024

    Abstract Heat transfer improves significantly when the working fluid has high thermal conductivity. Heat transfer can be found in fields such as food processing, solar through collectors, and drug delivery. Considering this notable fact, this work is focused on investigating the bio-convection-enhanced heat transfer in the existence of convective boundary conditions in the flow of hybrid nanofluid across a stretching surface. Buongiorno fluid model with hybrid nanoparticles has been employed along the swimming microorganisms to investigate the mixture base working fluid. The developed nonlinear flow governing equations have been tackled numerically with the help of the… More > Graphic Abstract

    Bioconvective Hybrid Flow with Microorganisms Migration and Buongiorno’s Model under Convective Condition

  • Open Access

    ARTICLE

    Numerical Study on 3D MHD Darcy-Forchheimer Flow Caused by Gyrotactic Microorganisms of the Bio-Convective Casson Nanofluid across a Stretched Sheet

    S. H. Elhag*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 377-395, 2024, DOI:10.32604/fhmt.2023.044428 - 21 March 2024

    Abstract A review of the literature revealed that nanofluids are more effective in transferring heat than conventional fluids. Since there are significant gaps in the illumination of existing methods for enhancing heat transmission in nanomaterials, a thorough investigation of the previously outlined models is essential. The goal of the ongoing study is to determine whether the microscopic gold particles that are involved in mass and heat transmission drift in freely. The current study examines heat and mass transfer on 3D MHD Darcy–Forchheimer flow of Casson nanofluid-induced bio-convection past a stretched sheet. The inclusion of the nanoparticles… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Magnetic Dipole Effect on a Radiative Ferromagnetic Liquid Flowing over a Porous Stretched Sheet

    G. Dharmaiah1, F. Mebarek-Oudina2,*, K. S. Balamurugan3, N. Vedavathi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 293-310, 2024, DOI:10.32604/fdmp.2023.030325 - 14 December 2023

    Abstract The effects of a magnetic dipole on a nonlinear thermally radiative ferromagnetic liquid flowing over a stretched surface in the presence of Brownian motion and thermophoresis are investigated. By means of a similarity transformation, ordinary differential equations are derived and solved afterwards using a numerical (the BVP4C) method. The impact of various parameters, namely the velocity, temperature, concentration, is presented graphically. It is shown that the nanoparticles properties, in conjunction with the magnetic dipole effect, can increase the thermal conductivity of the engineered nanofluid and, consequently, the heat transfer. Comparison with earlier studies indicates high More > Graphic Abstract

    Numerical Analysis of the Magnetic Dipole Effect on a Radiative Ferromagnetic Liquid Flowing over a Porous Stretched Sheet

  • Open Access

    ARTICLE

    MHD FLOW OF CARREAU NANOFLUID EXPLORED USING CNT OVER A NONLINEAR STRETCHED SHEET

    P.S.S. Nagalakshm*, N. Vijaya

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-9, 2020, DOI:10.5098/hmt.14.4

    Abstract In the present investigation is to magnetohydrodymaics (MHD) radiative flow of an incompressible steady flow of Carreau nanofluid explored with carbon nanotubes. The boundary layer flow and heat transfer to a Carreau nanofluid model over a non- linear stretching surface is introduced. The Carreau model, adequate for many non-Newtonian fluids is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable… More >

Displaying 1-10 on page 1 of 4. Per Page