Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Dynamic Friction Loading Experimental Techniques Based on Split Hopkinson Bar

    Wenxuan Du1, Zhongwei Mou2, Xuanfu He1, Jianping Yin1, Yinggang Miao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011421

    Abstract High-speed friction and wear are usually occurring in the service life of advanced equipment, and their behavior even influences service safety. However, there is still technique gap in accurately obtaining the parameters during dynamic friction induced by high-speed equipment. This gap is primarily stemmed from the available dynamic friction loading techniques with poor controllability. In this work, a novel dynamic friction apparatus is designed based on split Hopkinson bar technique. The loading principle is from stress wave generated by striker bar hitting the incident bar, which forces the sandwiched friction pair to slide with a… More >

  • Open Access

    ARTICLE

    Effect of Blasting Stress Wave on Dynamic Crack Propagation

    Huizhen Liu1,2, Duanying Wan3, Meng Wang3, Zheming Zhu3, Liyun Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 349-368, 2024, DOI:10.32604/cmes.2023.028197 - 22 September 2023

    Abstract Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation. Therefore, evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting. In this study, ANSYS/LS-DYNA was used for blasting numerical simulation, in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed. Moreover, ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors (DSIFs). The universal function was calculated… More >

  • Open Access

    ARTICLE

    Dynamic Stress Intensity Factors of Collinear Cracks under a Uniform Tensile Stress Wave

    K.-C. Wu2, S.-M. Huang2, S.-H. Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.2, pp. 133-148, 2013, DOI:10.3970/cmes.2013.093.133

    Abstract An analysis is presented for an array of collinear cracks subject to a uniform tensile stress wave in an isotropic material. An integral equation for the problem is established by modeling the cracks as distributions of dislocations. The integral equation is solved numerically in the Laplace transform domain first and the solution is then inverted to the time domain to calculate the dynamic stress intensity factors. Numerical examples of one, two, or three collinear cracks are given. The results of one or two cracks are checked to agree closely with the existing results. More >

Displaying 1-10 on page 1 of 3. Per Page