Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Stress Detector Supported Galvanic Skin Response System with IoT and LabVIEW GUI

    Rajesh Singh1, Anita Gehlot1, Ritika Saxena2, Khalid Alsubhi3, Divya Anand1,*, Irene Delgado Noya4,5, Shaik Vaseem Akram1, Sushabhan Choudhury2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1217-1233, 2023, DOI:10.32604/cmc.2023.023894 - 22 September 2022

    Abstract Stress is now a serious disease that exists due to changes in working life and food ecosystems around the world. In general, it is difficult for a person to know if they are under stress. According to previous research, temperature, heart rate variability (HRV), humidity, and blood pressure are used to assess stress levels with the use of instruments. With the development of sensor technology and wireless connectivity, people around the world are adopting and using smart devices. In this study, a bio signal detection device with Internet of Things (IoT) capability with a galvanic… More >

  • Open Access

    ARTICLE

    Predicting Violence-Induced Stress in an Arabic Social Media Forum

    Abeer Abdulaziz AlArfaj1, Nada Ali Hakami2,*, Hanan Ahmed Hosni Mahmoud1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1423-1439, 2023, DOI:10.32604/iasc.2023.028067 - 19 July 2022

    Abstract Social Media such as Facebook plays a substantial role in virtual communities by sharing ideas and ideologies among different populations over time. Social interaction analysis aids in defining people’s emotions and aids in assessing public attitudes, towards different issues such as violence against women and children. In this paper, we proposed an Arabic language prediction model to identify the issue of Violence-Induced Stress in social media. We searched for Arabic posts of many countries through Facebook application programming interface (API). We discovered that the stress state of a battered woman is usually related to her… More >

  • Open Access

    ARTICLE

    PotholeEye+: Deep-Learning Based Pavement Distress Detection System toward Smart Maintenance

    Juyoung Park1,*, Jung Hee Lee1, Junseong Bang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 965-976, 2021, DOI:10.32604/cmes.2021.014669 - 24 May 2021

    Abstract

    We propose a mobile system, called PotholeEye+, for automatically monitoring the surface of a roadway and detecting the pavement distress in real-time through analysis of a video. PotholeEye+ pre-processes the images, extracts features, and classifies the distress into a variety of types, while the road manager is driving. Every day for a year, we have tested PotholeEye+ on real highway involving real settings, a camera, a mini computer, a GPS receiver, and so on. Consequently, PotholeEye+ detected the pavement distress with accuracy of 92%, precision of 87% and recall 74% averagely during driving at an average speed of

    More >

  • Open Access

    ARTICLE

    Teensensor: Gaussian Processes for Micro-Blog Based Teen’S Acute and Chronic Stress Detection

    Yuanyuan Xue1,2, Qi Li1, LingFeng1

    Computer Systems Science and Engineering, Vol.34, No.3, pp. 151-164, 2019, DOI:10.32604/csse.2019.34.151

    Abstract Stress is a common problem all over the world. More and more teenagers today have to cope with different stressor events coming from school, family, peer relation, self-cognition, romantic relation, etc. Over-stress without proper guidance will lead to a series of potential problems including physical and mental disorders, and even suicide due to the shortage of teen’ s psychological endurance and controllability. Therefore, it is necessary and important to timely sense adolescents’ stress and help them release the stress properly. In this paper, we present a micro-blog based system called TeenSensor, aiming to detect teens… More >

Displaying 1-10 on page 1 of 4. Per Page