Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    A Digital Twin Framework for Structural Strength Monitoring

    Ziyu Xu1, Kuo Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011245

    Abstract Considering experimental testing data is costly, and sensor data is often sparse, while simulation analysis provides overall strength information with lower accuracy, a digital twin framework is proposed for full-field structural strength assessment and prediction. The framework is mainly divided into two stages. In the offline stage, the simulation model of the structure is established, and the sensor layouts are completed. Then, the DNN pre-training model is constructed based on the reduced simulation data. In the online stage, the experimentally measured data are predicted to obtain the time-series sensors data, and the traditional transfer learning… More >

  • Open Access

    ARTICLE

    The Peak Stress Method Applied to Fatigue Strength Assessments of Load Carrying Transverse Fillet Welds with Toe or Root Failures

    G. Meneghetti1

    Structural Durability & Health Monitoring, Vol.8, No.2, pp. 111-130, 2012, DOI:10.3970/sdhm.2012.008.111

    Abstract This paper deals with the local approach based on the Notch Stress Intensity Factors (NSIFs) to analyse the fatigue behavior of welded joints. In transverse load carrying fillet-welded joints, failure may occur either at the toe or at the root, depending on the geometry. At the toe, due to the flank angles that are usually encountered in practice, mode I local stresses are singular, while mode II stresses are not. Conversely, at the root of the particular joints analysed in the present paper both mode I and mode II stresses are singular and must be… More >

Displaying 1-10 on page 1 of 2. Per Page