Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (293)
  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay

    Li Wang1,*, Xiaoyong Wang2

    Energy Engineering, Vol.121, No.12, pp. 3953-3979, 2024, DOI:10.32604/ee.2024.056705 - 22 November 2024

    Abstract Plug-in Hybrid Electric Vehicles (PHEVs) represent an innovative breed of transportation, harnessing diverse power sources for enhanced performance. Energy management strategies (EMSs) that coordinate and control different energy sources is a critical component of PHEV control technology, directly impacting overall vehicle performance. This study proposes an improved deep reinforcement learning (DRL)-based EMS that optimizes real-time energy allocation and coordinates the operation of multiple power sources. Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces. They often fail to strike an optimal balance between exploration and exploitation, and… More >

  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    ARTICLE

    Combined Wind-Storage Frequency Modulation Control Strategy Based on Fuzzy Prediction and Dynamic Control

    Weiru Wang1, Yulong Cao1,*, Yanxu Wang1, Jiale You1, Guangnan Zhang1, Yu Xiao2

    Energy Engineering, Vol.121, No.12, pp. 3801-3823, 2024, DOI:10.32604/ee.2024.055398 - 22 November 2024

    Abstract To ensure frequency stability in power systems with high wind penetration, the doubly-fed induction generator (DFIG) is often used with the frequency fast response control (FFRC) to participate in frequency response. However, a certain output power suppression amount (OPSA) is generated during frequency support, resulting in the frequency modulation (FM) capability of DFIG not being fully utilised, and the system’s unbalanced power will be increased during speed recovery, resulting in a second frequency drop (SFD) in the system. Firstly, the frequency response characteristics of the power system with DFIG containing FFRC are analysed. Then, based… More >

  • Open Access

    ARTICLE

    An Adaptive Congestion Control Optimization Strategy in SDN-Based Data Centers

    Jinlin Xu1,2, Wansu Pan1,*, Haibo Tan1,2, Longle Cheng1, Xiaofeng Li1,2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2709-2726, 2024, DOI:10.32604/cmc.2024.056925 - 18 November 2024

    Abstract The traffic within data centers exhibits bursts and unpredictable patterns. This rapid growth in network traffic has two consequences: it surpasses the inherent capacity of the network’s link bandwidth and creates an imbalanced network load. Consequently, persistent overload situations eventually result in network congestion. The Software Defined Network (SDN) technology is employed in data centers as a network architecture to enhance performance. This paper introduces an adaptive congestion control strategy, named DA-DCTCP, for SDN-based Data Centers. It incorporates Explicit Congestion Notification (ECN) and Round-Trip Time (RTT) to establish congestion awareness and an ECN marking model.… More >

  • Open Access

    PROCEEDINGS

    A New Flow Regulation Strategy by Coupling Multiple Methods for High Efficiency Turbine with Wide Conditions

    Ziran Li1, Weihao Zhang2, Lei Qi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013344

    Abstract In the future, the wide speed and altitude range aviation engine will have features such as "wide range of high-bypass-ratio adjustment" and "wide range of high-pressure-ratio adjustment". Therefore, its turbine will work in a very wide range of operating conditions, with a large flow regulation range. Under conditions of high-rate flow regulation, existing flow control technologies can significantly reduce turbine efficiency. To support the performance and technical specifications of future engines, their low-pressure turbines need to maintain high operational efficiency within a flow regulation range and power output range that exceed those of current aircraft engines.
    More >

  • Open Access

    ARTICLE

    The Relationships between the Short Video Addiction, Self-Regulated Learning, and Learning Well-Being of Chinese Undergraduate Students

    Jian-Hong Ye1,2, Yuting Cui3,*, Li Wang4, Jhen-Ni Ye5

    International Journal of Mental Health Promotion, Vol.26, No.10, pp. 805-815, 2024, DOI:10.32604/ijmhp.2024.055814 - 31 October 2024

    Abstract Background: With the global popularity of short videos, particularly among young people, short video addiction has become a worrying phenomenon that poses significant risks to individual health and adaptability. Self-regulated learning (SRL) strategies are key factors in predicting learning outcomes. This study, based on the SRL theory, uses short video addiction as the independent variable, SRL strategies as the mediating variable, and learning well-being as the outcome variable, aiming to reveal the relationships among short video addiction, self-regulated learning, and learning well-being among Chinese college students. Methods: Using a cross-sectional study design and applying the… More >

  • Open Access

    ARTICLE

    Improved Strategy of Grid-Forming Virtual Synchronous Generator Based on Transient Damping

    Lei Zhang1, Rongliang Shi1,2,*, Junhui Li2, Yannan Yu1, Yu Zhang1

    Energy Engineering, Vol.121, No.11, pp. 3181-3197, 2024, DOI:10.32604/ee.2024.054485 - 21 October 2024

    Abstract The grid-forming virtual synchronous generator (GFVSG) not only employs a first-order low-pass filter for virtual inertia control but also introduces grid-connected active power (GCAP) dynamic oscillation issues, akin to those observed in traditional synchronous generators. In response to this, an improved strategy for lead-lag filter based GFVSG (LLF-GFVSG) is presented in this article. Firstly, the grid-connected circuit structure and control principle of typical GFVSG are described, and a closed-loop small-signal model for GCAP in GFVSG is established. The causes of GCAP dynamic oscillation of GFVSG under the disturbances of active power command as well as More >

  • Open Access

    ARTICLE

    Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit

    Jingjing Bai1, Yunpeng Cheng1, Shenyun Yao2,*, Fan Wu1, Cheng Chen1

    Energy Engineering, Vol.121, No.11, pp. 3381-3400, 2024, DOI:10.32604/ee.2024.053683 - 21 October 2024

    Abstract To mitigate the impact of wind power volatility on power system scheduling, this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy. And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit. The strategy takes smoothing power output as the main objectives. The first level is the wind-storage joint scheduling, and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster (WPC), respectively, according to the scheduling power of WPC and… More >

  • Open Access

    ARTICLE

    A Two-Layer Optimal Scheduling Strategy for Rural Microgrids Accounting for Flexible Loads

    Guo Zhao1,2, Chi Zhang1,2,*, Qiyuan Ren1,2

    Energy Engineering, Vol.121, No.11, pp. 3355-3379, 2024, DOI:10.32604/ee.2024.053130 - 21 October 2024

    Abstract In the context of China’s “double carbon” goals and rural revitalization strategy, the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids. Considering the operational characteristics of rural microgrids and their impact on users, this paper establishes a two-layer scheduling model incorporating flexible loads. The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid, while the lower-layer aims to minimize the total electricity cost for rural users. An Improved Adaptive Genetic Algorithm (IAGA) is proposed to solve the model. Results show that the two-layer scheduling model with More >

Displaying 1-10 on page 1 of 293. Per Page