Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access

    ARTICLE

    Combined Wind-Storage Frequency Modulation Control Strategy Based on Fuzzy Prediction and Dynamic Control

    Weiru Wang1, Yulong Cao1,*, Yanxu Wang1, Jiale You1, Guangnan Zhang1, Yu Xiao2

    Energy Engineering, Vol.121, No.12, pp. 3801-3823, 2024, DOI:10.32604/ee.2024.055398 - 22 November 2024

    Abstract To ensure frequency stability in power systems with high wind penetration, the doubly-fed induction generator (DFIG) is often used with the frequency fast response control (FFRC) to participate in frequency response. However, a certain output power suppression amount (OPSA) is generated during frequency support, resulting in the frequency modulation (FM) capability of DFIG not being fully utilised, and the system’s unbalanced power will be increased during speed recovery, resulting in a second frequency drop (SFD) in the system. Firstly, the frequency response characteristics of the power system with DFIG containing FFRC are analysed. Then, based… More >

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    ARTICLE

    Three-Level Optimal Scheduling and Power Allocation Strategy for Power System Containing Wind-Storage Combined Unit

    Jingjing Bai1, Yunpeng Cheng1, Shenyun Yao2,*, Fan Wu1, Cheng Chen1

    Energy Engineering, Vol.121, No.11, pp. 3381-3400, 2024, DOI:10.32604/ee.2024.053683 - 21 October 2024

    Abstract To mitigate the impact of wind power volatility on power system scheduling, this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy. And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit. The strategy takes smoothing power output as the main objectives. The first level is the wind-storage joint scheduling, and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster (WPC), respectively, according to the scheduling power of WPC and… More >

  • Open Access

    ARTICLE

    Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set

    Gang Wang*, Yuedong Wu, Xiaoyi Qian, Yi Zhao

    Energy Engineering, Vol.121, No.11, pp. 3417-3435, 2024, DOI:10.32604/ee.2024.052268 - 21 October 2024

    Abstract A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that the More >

  • Open Access

    PROCEEDINGS

    Source-Sink Matching Model Focusing on the Feasibility of CO2 Pipeline Transport

    Yubo Jiao1, Wei Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011157

    Abstract The source-sink matching optimization problem is one of the more important aspects of carbon capture and storage (CCS) system planning studies, and a large number of studies have been conducted using mathematical modeling to assess the feasibility of deployment in the planning region, thus providing important decision support. A framework of optimization system applicable to source-sink matching analysis was constructed based on the structural relationship between directly connected sources and sinks, taking into account multiple factors (transport characteristics, CO2 injection rate and connection period, etc.), which can ensure the feasibility of CO2 pipeline transportation operation and… More >

  • Open Access

    PROCEEDINGS

    Optimization of Thermal Management Structure of Multilayer Concentric Circle Metal Hydride-Phase Change Material Reactor

    Yihan Liao1, Jingfa Li2,*, Yi Wang1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011032

    Abstract Metal Hydride (MH) is a promising hydrogen storage technique owing to its safety, availability, and high volumetric storage density. MH hydrogen storage reactor is the core component of MH hydrogen storage technology. However, the thermal effect of MH hydrogen storage reactor in the process of hydrogenation/dehydrogenation is significant, which requires an efficient heat management system for the reactor. Phase change materials (PCM) can be applied to MH hydrogen storage reactor, and have the advantages of simple structure. In this paper, representative PCM thermal management methods were summarized, and the distribution structure of the existing multi-layer… More >

  • Open Access

    PROCEEDINGS

    Numerical Study on the Sloshing and Thermodynamic Characteristics of Liquid Hydrogen Storage Tank in Hydrogen-Powered Aircraft

    Zhibo Chen1, Jingfa Li1,*, Bo Yu1, Jianli Li1, Wei Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011004

    Abstract Using liquid hydrogen as fuel is helpful to the aviation industry to achieve the goal of carbon peak and carbon neutrality. However, the liquid hydrogen storage tank will inevitably slosh during the use inhydrogen-powered aircraft, thus it is necessary to study the thermodynamic characteristics of liquid hydrogen storage tank during the sloshing process. In this paper, the thermodynamic behavior of liquid hydrogen storage tank under external excitation is studied by using Volume of Fluid(VOF) model and Lee model through numerical simulation methods. The changes of pressure and temperature in the process of tank sloshing under… More >

  • Open Access

    ARTICLE

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

    Saif Serag1,*, Adil Echchelh2, Biagio Morrone1

    Energy Engineering, Vol.121, No.10, pp. 2719-2741, 2024, DOI:10.32604/ee.2024.054424 - 11 September 2024

    Abstract Renewable energy sources are essential for mitigating the greenhouse effect and supplying energy to resource-scarce regions. However, their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs. This paper investigates renewable and clean storage systems, specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen, both of which are highly efficient and promising for future energy production and storage. The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating… More > Graphic Abstract

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

  • Open Access

    ARTICLE

    Stackelberg Game-Based Optimal Dispatch for PEDF Park and Power Grid Interaction under Multiple Incentive Mechanisms

    Weidong Chen1,2,*, Yun Zhao3, Xiaorui Wu1,2, Ziwen Cai3, Min Guo1,2, Yuxin Lu3

    Energy Engineering, Vol.121, No.10, pp. 3075-3093, 2024, DOI:10.32604/ee.2024.051404 - 11 September 2024

    Abstract The integration of photovoltaic, energy storage, direct current, and flexible load (PEDF) technologies in building power systems is an important means to address the energy crisis and promote the development of green buildings. The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid. For this purpose, this work introduces a framework of multiple incentive mechanisms for a PEDF park, a building energy system that implements PEDF technologies. The incentive mechanisms proposed in this paper include both economic and noneconomic… More >

  • Open Access

    ARTICLE

    Analysis of System Value Evolution Trends of Energy Storage in Decarbonization Process

    Mo Zhou1, Jingming Zhao1, Zili Chen2,*, Qiushi Fang1, Hua Li1, Zhaoyuan Wu2

    Energy Engineering, Vol.121, No.10, pp. 3037-3053, 2024, DOI:10.32604/ee.2024.050842 - 11 September 2024

    Abstract With the continuous expansion of the scale of renewable energy installation, the demand for energy storage has increased significantly. However, there are significant differences in the value of energy storage in different scenarios, and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent. Therefore, the multi-dimensional value evolution trend of energy storage has become a key issue. This study selects indicators from three dimensions of energy storage: low-carbon emission reduction, smoothing wind and solar power fluctuations, and saving generation costs, quantifying the economic, environmental, and technical values of energy storage. This… More >

Displaying 1-10 on page 1 of 224. Per Page