Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Improving Stock Price Forecasting Using a Large Volume of News Headline Text

    Daxing Zhang1,*, Erguan Cai2

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3931-3943, 2021, DOI:10.32604/cmc.2021.012302 - 24 August 2021

    Abstract Previous research in the area of using deep learning algorithms to forecast stock prices was focused on news headlines, company reports, and a mix of daily stock fundamentals, but few studies achieved excellent results. This study uses a convolutional neural network (CNN) to predict stock prices by considering a great amount of data, consisting of financial news headlines. We call our model N-CNN to distinguish it from a CNN. The main concept is to narrow the diversity of specific stock prices as they are impacted by news headlines, then horizontally expand the news headline data… More >

Displaying 1-10 on page 1 of 1. Per Page