Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition

    Zhang Zhi1, Haiyu Huang2, Wei Xiong2, Yijia Zhou3, Mingyu Yan3,*, Shaolian Xia2, Baofeng Jiang2, Renbin Su2, Xichen Tian4

    Energy Engineering, Vol.121, No.6, pp. 1557-1576, 2024, DOI:10.32604/ee.2024.047401 - 21 May 2024

    Abstract Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existing scenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios, which threatens the robustness of stochastic unit commitment and hinders its application. This paper provides a stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming and Benders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouples the primal problem into the master problem and two types of subproblems. In the master problem, the committed generator is determined, while the feasibility and… More >

  • Open Access

    ARTICLE

    Stochastic Programming for Hub Energy Management Considering Uncertainty Using Two-Point Estimate Method and Optimization Algorithm

    Ali S. Alghamdi1, Mohana Alanazi2, Abdulaziz Alanazi3, Yazeed Qasaymeh1,*, Muhammad Zubair1,4, Ahmed Bilal Awan5, M. G. B. Ashiq6

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2163-2192, 2023, DOI:10.32604/cmes.2023.029453 - 03 August 2023

    Abstract To maximize energy profit with the participation of electricity, natural gas, and district heating networks in the day-ahead market, stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources, has been carried out. This has been done using a new meta-heuristic algorithm, improved artificial rabbits optimization (IARO). In this study, the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method (TPEM). The IARO algorithm is applied to calculate the best capacity of hub energy equipment, such as solar and wind renewable energy sources, combined heat… More >

  • Open Access

    ARTICLE

    Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems

    Fatemeh Ahmadi Zeidabadi1, Mohammad Dehghani2, Pavel Trojovský2,*, Štěpán Hubálovský3, Victor Leiva4, Gaurav Dhiman5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 399-416, 2022, DOI:10.32604/cmc.2022.024736 - 24 February 2022

    Abstract Finding a suitable solution to an optimization problem designed in science is a major challenge. Therefore, these must be addressed utilizing proper approaches. Based on a random search space, optimization algorithms can find acceptable solutions to problems. Archery Algorithm (AA) is a new stochastic approach for addressing optimization problems that is discussed in this study. The fundamental idea of developing the suggested AA is to imitate the archer's shooting behavior toward the target panel. The proposed algorithm updates the location of each member of the population in each dimension of the search space by a… More >

  • Open Access

    ARTICLE

    Gaining-Sharing Knowledge Based Algorithm for Solving Stochastic Programming Problems

    Prachi Agrawal1, Khalid Alnowibet2, Ali Wagdy Mohamed3,4,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2847-2868, 2022, DOI:10.32604/cmc.2022.023126 - 07 December 2021

    Abstract This paper presents a novel application of metaheuristic algorithms for solving stochastic programming problems using a recently developed gaining sharing knowledge based optimization (GSK) algorithm. The algorithm is based on human behavior in which people gain and share their knowledge with others. Different types of stochastic fractional programming problems are considered in this study. The augmented Lagrangian method (ALM) is used to handle these constrained optimization problems by converting them into unconstrained optimization problems. Three examples from the literature are considered and transformed into their deterministic form using the chance-constrained technique. The transformed problems are More >

  • Open Access

    ARTICLE

    Two-Stage Production Planning Under Stochastic Demand: Case Study of Fertilizer Manufacturing

    Chia-Nan Wang1, Shao-Dong Syu1,2,*, Chien-Chang Chou3, Viet Tinh Nguyen4, Dang Van Thuy Cuc5

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1195-1207, 2022, DOI:10.32604/cmc.2022.019890 - 07 September 2021

    Abstract Agriculture is a key facilitator of economic prosperity and nourishes the huge global population. To achieve sustainable agriculture, several factors should be considered, such as increasing nutrient and water efficiency and/or improving soil health and quality. Using fertilizer is one of the fastest and easiest ways to improve the quality of nutrients inland and increase the effectiveness of crop yields. Fertilizer supplies most of the necessary nutrients for plants, and it is estimated that at least 30%–50% of crop yields is attributable to commercial fertilizer nutrient inputs. Fertilizer is always a major concern in achieving… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence Approach for Solving Stochastic Transportation Problems

    Prachi Agrawal1, Khalid Alnowibet2, Talari Ganesh1, Adel F. Alrasheedi2, Hijaz Ahmad3, Ali Wagdy Mohamed4,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 817-829, 2022, DOI:10.32604/cmc.2022.019685 - 07 September 2021

    Abstract Recent years witness a great deal of interest in artificial intelligence (AI) tools in the area of optimization. AI has developed a large number of tools to solve the most difficult search-and-optimization problems in computer science and operations research. Indeed, metaheuristic-based algorithms are a sub-field of AI. This study presents the use of the metaheuristic algorithm, that is, water cycle algorithm (WCA), in the transportation problem. A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution. Since the parameters are stochastic, the… More >

  • Open Access

    ARTICLE

    Stochastic Programming For Order Allocation And Production Planning

    Phan Nguyen Ky Phuc*

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 75-85, 2022, DOI:10.32604/csse.2022.017793 - 26 August 2021

    Abstract Stochastic demand is an important factor that heavily affects production planning. It influences activities such as purchasing, manufacturing, and selling, and quick adaption is required. In production planning, for reasons such as reducing costs and obtaining supplier discounts, many decisions must be made in the initial stage when demand has not been realized. The effects of non-optimal decisions will propagate to later stages, which can lead to losses due to overstocks or out-of-stocks. To find the optimal solutions for the initial and later stage regarding demand realization, this study proposes a stochastic two-stage linear programming… More >

Displaying 1-10 on page 1 of 7. Per Page