Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (133)
  • Open Access

    ARTICLE

    Improved Unit Commitment with Accurate Dynamic Scenarios Clustering Based on Multi-Parametric Programming and Benders Decomposition

    Zhang Zhi1, Haiyu Huang2, Wei Xiong2, Yijia Zhou3, Mingyu Yan3,*, Shaolian Xia2, Baofeng Jiang2, Renbin Su2, Xichen Tian4

    Energy Engineering, Vol.121, No.6, pp. 1557-1576, 2024, DOI:10.32604/ee.2024.047401

    Abstract Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existing scenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios, which threatens the robustness of stochastic unit commitment and hinders its application. This paper provides a stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming and Benders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouples the primal problem into the master problem and two types of subproblems. In the master problem, the committed generator is determined, while the feasibility and… More >

  • Open Access

    ARTICLE

    Enhancing Renewable Energy Integration: A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks

    Ali S. Alghamdi1,*, Mohamed A. Zohdy2, Saad Aldoihi3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1339-1370, 2024, DOI:10.32604/cmes.2024.048839

    Abstract In the contemporary era, the global expansion of electrical grids is propelled by various renewable energy sources (RESs). Efficient integration of stochastic RESs and optimal power flow (OPF) management are critical for network optimization. This study introduces an innovative solution, the Gaussian Bare-Bones Levy Cheetah Optimizer (GBBLCO), addressing OPF challenges in power generation systems with stochastic RESs. The primary objective is to minimize the total operating costs of RESs, considering four functions: overall operating costs, voltage deviation management, emissions reduction, voltage stability index (VSI) and power loss mitigation. Additionally, a carbon tax is included in… More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    FL-EASGD: Federated Learning Privacy Security Method Based on Homomorphic Encryption

    Hao Sun*, Xiubo Chen, Kaiguo Yuan

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2361-2373, 2024, DOI:10.32604/cmc.2024.049159

    Abstract Federated learning ensures data privacy and security by sharing models among multiple computing nodes instead of plaintext data. However, there is still a potential risk of privacy leakage, for example, attackers can obtain the original data through model inference attacks. Therefore, safeguarding the privacy of model parameters becomes crucial. One proposed solution involves incorporating homomorphic encryption algorithms into the federated learning process. However, the existing federated learning privacy protection scheme based on homomorphic encryption will greatly reduce the efficiency and robustness when there are performance differences between parties or abnormal nodes. To solve the above… More >

  • Open Access

    ARTICLE

    Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation

    Hongsheng Su, Lixia Dong*, Xiaoying Yu, Kai Liu

    Energy Engineering, Vol.121, No.4, pp. 973-986, 2024, DOI:10.32604/ee.2023.043497

    Abstract Time based maintenance (TBM) and condition based maintenance (CBM) are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes, however, these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues. Hence, this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue. Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state, a stochastic differential equation model (SDE) and More > Graphic Abstract

    Research on Carbon Emission for Preventive Maintenance of Wind Turbine Gearbox Based on Stochastic Differential Equation

  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

  • Open Access

    ARTICLE

    Deep Neural Network Architecture Search via Decomposition-Based Multi-Objective Stochastic Fractal Search

    Hongshang Xu1, Bei Dong1,2,*, Xiaochang Liu1, Xiaojun Wu1,2

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 185-202, 2023, DOI:10.32604/iasc.2023.041177

    Abstract Deep neural networks often outperform classical machine learning algorithms in solving real-world problems. However, designing better networks usually requires domain expertise and consumes significant time and computing resources. Moreover, when the task changes, the original network architecture becomes outdated and requires redesigning. Thus, Neural Architecture Search (NAS) has gained attention as an effective approach to automatically generate optimal network architectures. Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity. A myriad of research has revealed that network performance and structural complexity are often positively correlated. Nevertheless, complex network structures will bring… More >

  • Open Access

    ARTICLE

    A Novel Fractional Dengue Transmission Model in the Presence of Wolbachia Using Stochastic Based Artificial Neural Network

    Zeshan Faiz1, Iftikhar Ahmed1, Dumitru Baleanu2,3,4, Shumaila Javeed1,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1217-1238, 2024, DOI:10.32604/cmes.2023.029879

    Abstract The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model (FDTM) in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network (LM-NN) technique. The fractional dengue transmission model (FDTM) consists of 12 compartments. The human population is divided into four compartments; susceptible humans (Sh), exposed humans (Eh), infectious humans (Ih), and recovered humans (Rh). Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments: aquatic (eggs, larvae, pupae), susceptible, exposed, and infectious. We investigated three different cases of vertical transmission probability (η), namely when Wolbachia-free mosquitoes persist only… More >

  • Open Access

    ARTICLE

    Distributed Stochastic Optimization with Compression for Non-Strongly Convex Objectives

    Xuanjie Li, Yuedong Xu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 459-481, 2024, DOI:10.32604/cmes.2023.043247

    Abstract We are investigating the distributed optimization problem, where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions. Since nodes exchange optimization parameters through the wireless network, large-scale training models can create communication bottlenecks, resulting in slower training times. To address this issue, CHOCO-SGD was proposed, which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions. Nevertheless, most convex functions are not strongly convex (such as logistic regression or Lasso), which raises the question of whether this… More >

  • Open Access

    ARTICLE

    RB-DEM Modeling and Simulation of Non-Persisting Rough Open Joints Based on the IFS-Enhanced Method

    Hangtian Song1,2, Xudong Chen1,2, Chun Zhu3, Qian Yin4, Wei Wang1,2, Qingxiang Meng1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 337-359, 2024, DOI:10.32604/cmes.2023.031496

    Abstract When the geological environment of rock masses is disturbed, numerous non-persisting open joints can appear within it. It is crucial to investigate the effect of open joints on the mechanical properties of rock mass. However, it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations. This paper presents a novel solution to solve the problem. By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system (IFS) method, rough curves with any orientation can be generated. The Douglas-Peucker algorithm is then applied to simplify these curves by removing More > Graphic Abstract

    RB-DEM Modeling and Simulation of Non-Persisting Rough Open Joints Based on the IFS-Enhanced Method

Displaying 1-10 on page 1 of 133. Per Page