Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    The Study on Bamboo Microfibers Isolated by Steam Explosion and Their Comprehensive Properties

    Qiushi Li1,2,#, Ronggang Luo1,2,#, Yu Chen3, Jinhui Xiong3, Bei Qiao1, Xijuan Chai1,2, Linkun Xie1,2, Juan Wang3, Lianpeng Zhang1,2,*, Siqun Wang4, Guanben Du1,2, Kaimeng Xu1,2,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2809-2822, 2023, DOI:10.32604/jrm.2023.026184 - 27 April 2023

    Abstract To overcome the shortage of wood resources as well as to develop novel natural fibers materials, the Chimonobambusa quadrangularis (CQ) and Qiongzhuea tumidinoda (QT) planted in Southwest China were effectively isolated by the steam explosion (SE). The fine and uniform bamboo microfibers derived from CQ and QT were obtained, and their smallest average widths were 12.62 μm and 16.05 μm, respectively. The effects of steam explosion on the micro-morphology, chemical composition, thermal stability, crystallinity, surface wettability, and mechanical properties of bamboo microfibers were comprehensively investigated. The results showed that the relative content of cellulose in bamboo microfibers More > Graphic Abstract

    The Study on Bamboo Microfibers Isolated by Steam Explosion and Their Comprehensive Properties

  • Open Access

    ARTICLE

    Lignocellulosic Micro and Nanofibrillated Cellulose Produced by Steam Explosion for Wood Adhesive Formulations

    Saad Nader1,2, Felipe Guzman3, Raphael Becar1, César Segovia4, Cecilia Fuentealba3, Miguel Peirera3, Evelyne Mauret2, Nicolas Brosse1,*

    Journal of Renewable Materials, Vol.10, No.2, pp. 263-271, 2022, DOI:10.32604/jrm.2022.017923 - 30 August 2021

    Abstract The reinforcing impact of Lignocellulosic micro and nanofibrillated cellulose (L-MNFCs) obtained from Eucalyptus Globulus bark in Urea-Formaldehyde UF adhesive was tested. L-MNFCs were prepared by an environmentally friendly, low-cost process using a combination process involving steam explosion followed by refining and ultra-fine grinding. Obtained L-MNFCs showed a web-like morphology with some aggregates and lignin nanodroplets. They present a mixture of residual fibers and fine elements with a width varying between 5 nm to 20 μm, respectively. The effects of the addition of low amounts of L-MNFCs (1% wt.) on the properties of three different adhesives (Urea-Formaldehyde UF, Phenol-Formaldehyde More > Graphic Abstract

    Lignocellulosic Micro and Nanofibrillated Cellulose Produced by Steam Explosion for Wood Adhesive Formulations

  • Open Access

    ARTICLE

    Effect of Steam Explosion Technology Main Parameters on Moso Bamboo and Poplar Fiber

    Biqing Shu1,2, Qin Ren1, Lu Hong1, Zhongping Xiao2, Xiaoning Lu1,*, Wenya Wang2, Junbao Yu2,Naiqiang Fu2, Yiming Gu2, Jinjun Zheng2

    Journal of Renewable Materials, Vol.9, No.3, pp. 585-597, 2021, DOI:10.32604/jrm.2021.012932 - 14 January 2021

    Abstract One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard. When making fiberboard, a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability. In this study, the steam explosion pretreatment of Moso bamboo and poplar was conducted. The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber, the mass ratio of the unexploded specimen at the end face,… More >

  • Open Access

    ARTICLE

    Steam Exploded Peanut Shell Fiber as the Filler in the Rigid Polyurethane Foams

    Zehui Ju1, Qian He1, Tianyi Zhan1, Haiyang Zhang1,*, Lin Sun1, Lu Hong1, Xinyi Shi2, Xiaoning Lu1,*

    Journal of Renewable Materials, Vol.7, No.11, pp. 1077-1091, 2019, DOI:10.32604/jrm.2019.07525 - 14 July 2021

    Abstract In this study, steam exploded peanut shell fibers (SE-PSFs) were utilized to fabricate with rigid polyurethane foam (RPUF) in order to improve sound absorption performance and hydrothermal weather resistance. Optimized method of SE treatment, RPUF preparation and flame retardant treatment were selected to prepare SE-PSF/RPUF composites in this experiment. Physical and mechanical properties including density, water absorption capacity, thickness swelling rate, compressive strength, thermal conductivity and average sound absorption coefficient of SE-PSF/RPUF were investigated and compared with the control (PRUF). The results showed that the density, water absorption capacity, thickness swelling rate and thermal conductivity More >

Displaying 1-10 on page 1 of 4. Per Page