Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Health Monitoring of Dry Clutch System Using Deep Learning Approach

    Ganjikunta Chakrapani, V. Sugumaran*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1513-1530, 2023, DOI:10.32604/iasc.2023.034597 - 21 June 2023

    Abstract Clutch is one of the most significant components in automobiles. To improve passenger safety, reliability and economy of automobiles, advanced supervision and fault diagnostics are required. Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components. The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification. Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of professional expertise, have made researchers look for intelligent fault More >

  • Open Access

    ARTICLE

    Unsupervised Log Anomaly Detection Method Based on Multi-Feature

    Shiming He1, Tuo Deng1, Bowen Chen1, R. Simon Sherratt2, Jin Wang1,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 517-541, 2023, DOI:10.32604/cmc.2023.037392 - 08 June 2023

    Abstract Log anomaly detection is an important paradigm for system troubleshooting. Existing log anomaly detection based on Long Short-Term Memory (LSTM) networks is time-consuming to handle long sequences. Transformer model is introduced to promote efficiency. However, most existing Transformer-based log anomaly detection methods convert unstructured log messages into structured templates by log parsing, which introduces parsing errors. They only extract simple semantic feature, which ignores other features, and are generally supervised, relying on the amount of labeled data. To overcome the limitations of existing methods, this paper proposes a novel unsupervised log anomaly detection method based… More >

  • Open Access

    ARTICLE

    Iris Recognition Based on Multilevel Thresholding Technique and Modified Fuzzy c-Means Algorithm

    Slim Ben Chaabane1,2,*, Rafika Harrabi1,2, Anas Bushnag1, Hassene Seddik2

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 201-214, 2022, DOI:10.32604/jai.2022.032850 - 25 May 2023

    Abstract Biometrics represents the technology for measuring the characteristics of the human body. Biometric authentication currently allows for secure, easy, and fast access by recognizing a person based on facial, voice, and fingerprint traits. Iris authentication is one of the essential biometric methods for identifying a person. This authentication type has become popular in research and practical applications. Unlike the face and hands, the iris is an internal organ, protected and therefore less likely to be damaged. However, the number of helpful information collected from the iris is much greater than the other biometric human organs.… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern (LTP) Features and Non-subsampled Shearlet Transform (NSST) Domain Statistical Features

    Hilly Gohain Baruah*, Vijay Kumar Nath, Deepika Hazarika

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 137-164, 2022, DOI:10.32604/cmes.2022.018339 - 24 January 2022

    Abstract With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR) has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization (EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation… More >

  • Open Access

    ARTICLE

    Vibration Based Tool Insert Health Monitoring Using Decision Tree and Fuzzy Logic

    Kundur Shantisagar, R. Jegadeeshwaran*, G. Sakthivel, T. M. Alamelu Manghai

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 303-316, 2019, DOI:10.32604/sdhm.2019.00355

    Abstract The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools. This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach. A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe, where the condition of tool is monitored using vibration characteristics. The vibration signals for conditions such as heathy, damaged, thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system. The descriptive statistical features… More >

  • Open Access

    ARTICLE

    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The More >

  • Open Access

    ARTICLE

    Classifying Machine Learning Features Extracted from Vibration Signal with Logistic Model Tree to Monitor Automobile Tyre Pressure

    P. S. Anoop1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 191-208, 2017, DOI:10.3970/sdhm.2017.011.191

    Abstract Tyre pressure monitoring system (TPMS) is compulsory in most countries like the United States and European Union. The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data. A difference in wheel speed would trigger an alarm based on the algorithm implemented. In this paper, machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer. The obtained signals will be used to compute through statistical features and histogram features for More >

  • Open Access

    ARTICLE

    Feature-Based Vibration Monitoring of a Hydraulic Brake System Using Machine Learning

    T. M. Alamelu Manghai1, R. Jegadeeshwaran2

    Structural Durability & Health Monitoring, Vol.11, No.2, pp. 149-167, 2017, DOI:10.3970/sdhm.2017.011.149

    Abstract Hydraulic brakes in automobiles are an important control component used not only for the safety of the passenger but also for others moving on the road. Therefore, monitoring the condition of the brake components is inevitable. The brake elements can be monitored by studying the vibration characteristics obtained from the brake system using a proper signal processing technique through machine learning approaches. The vibration signals were captured using an accelerometer sensor under a various fault condition. The acquired vibration signals were processed for extracting meaningful information as features. The condition of the brake system can More >

  • Open Access

    ARTICLE

    Condition Monitoring of Roller Bearing by K-Star Classifier and K-Nearest Neighborhood Classifier Using Sound Signal.

    Rahul Kumar Sharma*1, V. Sugumaran1, Hemantha Kumar2, Amarnath M3

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 1-16, 2017, DOI:10.3970/sdhm.2017.012.001

    Abstract Most of the machineries in small or large scale industry have rotating element supported by bearings for rigid support and accurate movement. For proper functioning of machinery, condition monitoring of the bearing is very important. In present study sound signal is used to continuously monitor bearing health as sound signals of rotating machineries carry dynamic information of components. There are numerous studies in literature that are reporting superiority of vibration signal of bearing fault diagnosis. However, there are very few studies done using sound signal. The cost associated with condition monitoring using sound signal (Microphone)… More >

  • Open Access

    ARTICLE

    A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 69-90, 2017, DOI:10.3970/sdhm.2017.012.069

    Abstract Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger, creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead… More >

Displaying 1-10 on page 1 of 11. Per Page