Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (161)
  • Open Access

    ARTICLE

    The Impact of Nursing Staff’s Work Attitude on the Fear of Patients Recovering from Benign Tumors: Family Support as a Mediating Variable

    Chengzhe Guo1, Aihua Cheng2,*, Jian Chen2, Gaojie Cheng3

    Psycho-Oncologie, Vol.18, No.4, pp. 291-303, 2024, DOI:10.32604/po.2024.054446 - 04 December 2024

    Abstract The perception of nursing staff’s attitude influences patient fear. Understanding this dynamic is crucial for fostering a supportive environment conducive to patient well-being and effective healthcare practices. The purpose of this research is to investigate how the attitudes and behaviours of nursing staff influence the fear and anxiety levels of patients recovering from benign tumors, aiming to improve patient care and recovery outcomes. Data was collected from a sample of 100 participants, comprising 20 nursing staff and 80 patients recovering from benign tumors. Surveys were administered to gather quantitative data on attitudes and fear levels.… More >

  • Open Access

    ARTICLE

    Impact of Land Requisition for Military Training during World War II on Farming and the South Downs Landscape, England

    Nigel Walford*

    Revue Internationale de Géomatique, Vol.33, pp. 445-464, 2024, DOI:10.32604/rig.2024.054535 - 25 October 2024

    Abstract The impact of World War II on the physical landscape of British towns and cities as a result of airborne assault is well known. However, less newsworthy but arguably no less significant is the impact of the war on agriculture and the countryside, especially in South-East England. This paper outlines the building of an historical Geographical Information System (GIS) from different data sources including the National Farm Survey (NFS), Luftwaffe and Royal Air Force (RAF) aerial photographs and basic topographic mapping for the South Downs in East and West Sussex. It explores the impact and… More >

  • Open Access

    ARTICLE

    Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based on Statistical Intelligence

    Il Hwan Ji1, Ju Hyeon Lee1, Seungho Jeon2, Jung Taek Seo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1519-1549, 2024, DOI:10.32604/cmes.2024.053437 - 27 September 2024

    Abstract In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lack of performance of each component, such as computing resources like CPUs and batteries, to encrypt and decrypt data. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomical financial and human casualties. For this reason, the application of encrypted communication to IoT has been required, and the application of encrypted communication to IoT has become possible due to improvements in the computing performance of IoT devices and the development… More >

  • Open Access

    ARTICLE

    Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks

    Ayesha Khaliq1, Salman Afsar Awan1, Fahad Ahmad2,*, Muhammad Azam Zia1, Muhammad Zafar Iqbal3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3221-3242, 2024, DOI:10.32604/cmc.2024.053488 - 15 August 2024

    Abstract The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity. Current approaches in Extractive Text Summarization (ETS) leverage the modeling of inter-sentence relationships, a task of paramount importance in producing coherent summaries. This study introduces an innovative model that integrates Graph Attention Networks (GATs) with Transformer-based Bidirectional Encoder Representations from Transformers (BERT) and Latent Dirichlet Allocation (LDA), further enhanced by Term Frequency-Inverse Document Frequency (TF-IDF) values, to improve sentence selection by capturing comprehensive topical information. Our… More >

  • Open Access

    ARTICLE

    Enhancing Network Design through Statistical Evaluation of MANET Routing Protocols

    Ibrahim Alameri1,*, Tawfik Al-Hadhrami2, Anjum Nazir3, Abdulsamad Ebrahim Yahya4, Atef Gharbi5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 319-339, 2024, DOI:10.32604/cmc.2024.052999 - 18 July 2024

    Abstract This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network (MANET) routing protocols: Destination Sequenced Distance Vector (DSDV), Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Zone Routing Protocol (ZRP). In this paper, the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis, Mann-Whitney, and Friedman. It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns. The study is premised upon the Quality of More >

  • Open Access

    ARTICLE

    The Lambert-G Family: Properties, Inference, and Applications

    Jamal N. Al Abbasi1, Ahmed Z. Afify2,*, Badr Alnssyan3,*, Mustafa S. Shama4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 513-536, 2024, DOI:10.32604/cmes.2024.046533 - 16 April 2024

    Abstract This study proposes a new flexible family of distributions called the Lambert-G family. The Lambert family is very flexible and exhibits desirable properties. Its three-parameter special sub-models provide all significant monotonic and non-monotonic failure rates. A special sub-model of the Lambert family called the Lambert-Lomax (LL) distribution is investigated. General expressions for the LL statistical properties are established. Characterizations of the LL distribution are addressed mathematically based on its hazard function. The estimation of the LL parameters is discussed using six estimation methods. The performance of this estimation method is explored through simulation experiments. The More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407 - 26 March 2024

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

  • Open Access

    ARTICLE

    Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning

    K. Akilandeswari1, Nithya Rekha Sivakumar2,*, Hend Khalid Alkahtani3, Shakila Basheer3, Sara Abdelwahab Ghorashi2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1189-1205, 2024, DOI:10.32604/cmc.2023.034815 - 30 January 2024

    Abstract In this present time, Human Activity Recognition (HAR) has been of considerable aid in the case of health monitoring and recovery. The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance. Although many research works conducted on Smart Healthcare Monitoring, there remain a certain number of pitfalls such as time, overhead, and falsification involved during analysis. Therefore, this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning (SPR-SVIAL) for Smart Healthcare Monitoring. At first, the Statistical Partial Regression… More >

  • Open Access

    ARTICLE

    A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients

    Yu-Ming Chu1, Sobia Sultana2, Shazia Karim3, Saima Rashid4,*, Mohammed Shaaf Alharthi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 761-791, 2024, DOI:10.32604/cmes.2023.028600 - 22 September 2023

    Abstract The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations (PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several existing transforms. The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern… More >

  • Open Access

    PROCEEDINGS

    Statistic Structural Damage Detection Of Functionally Graded EulerBernoulli Beams Based on Element Modal Strain Energy Sensitivity

    Zhongming Hu1,*, Leilei Chen1, Delei Yang1, Jichao Zhang1, Youyang Xin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.09340

    Abstract Functionally graded materials (FGMs), a kind of composite materials, were proposed to satisfy the requirements of thermal barrier materials initially [1-3]. Compared with traditional composites, the microstructure and mechanical characteristics of FGMs change continuously which make them present excellent performance in deformation resistance or toughness under extreme mechanical and thermal loadings [4]. Therefore, FGMs have been paid much attention and experienced rapid developments in the last decade. Nowadays, various structural components manufactured by FGMs have been used in extensive applications, such as aerospace, bioengineering, nuclear industries, civil constructions etc. [5-7]
    While, FG Euler-Bernoulli beams maybe… More >

Displaying 1-10 on page 1 of 161. Per Page