Noor Ullah Bacha1, Songfeng Lu1, Attiq Ur Rehman1, Muhammad Idrees2, Yazeed Yasin Ghadi3, Tahani Jaser Alahmadi4,*
CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 707-748, 2024, DOI:10.32604/cmc.2024.054780
- 15 October 2024
Abstract Cross-Site Scripting (XSS) remains a significant threat to web application security, exploiting vulnerabilities to hijack user sessions and steal sensitive data. Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats. This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression (LR), Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Deep Neural Networks (DNN). Utilizing the XSS-Attacks-2021 dataset, which comprises 460 instances across various real-world traffic-related scenarios, this framework significantly enhances XSS attack detection. Our approach, which… More >