Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (155)
  • Open Access

    ARTICLE

    H/V Spectral Ratio Reveals Seismic Response of Base-Isolated Large-Span High-Rise in Beijing

    Zhangdi Xie1,2,*, Cantao Zhuang1, Yong Wu1, Linghui Niu1, Jianming Zhao3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070531 - 08 January 2026

    Abstract This study employed tri-component continuous monitoring data from 10 measurement points on both sides of a base isolation layer in the basement of a large-span high-rise building in Beijing, as well as from a free-field station and roof frame, during a Mw 5.5 magnitude earthquake in Pingyuan, Shandong, in 2023. The H/V spectral ratio method was used to evaluate the structural dynamic response characteristics of the building and analyze the regulatory effect of the base-isolation layer on seismic waves. The results indicate that during the earthquake, the peak frequency of the free-field and the measurement points… More >

  • Open Access

    ARTICLE

    Long-Term Bridge Health Evaluation Using Resonant Frequency Changes under Random Loading Conditions

    Thi Kim Chi Duong1, Bich-Ngoc. Mach2, Hoa-Cuc. Nguyen2, Thi Nhu Quynh Trinh2, Thanh Q. Nguyen3,4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070185 - 08 January 2026

    Abstract This study explores theoretical insights and experimental results on monitoring load-carrying capacity degradation in bridge spans through frequency analysis. Experiments were conducted on real bridge structures, including the Binh Thuan Bridge, focusing on analyzing the power spectral density (PSD) of vibration signals under random traffic loads. Detailed digital models of various bridge spans with different structural designs and construction periods were developed to ensure diversity. The study utilized PSD to analyze the vibration signals from the bridge spans under various loading conditions, identifying the vibration frequencies and the corresponding response regions. The research correlated the… More >

  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    PROCEEDINGS

    In-Vivo Chromophore Characterization of the Human Skin

    Qiaoyun Yu, Shibin Wang*, Zhiyong Wang, Chuanwei Li, Linan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011080

    Abstract The concentration of chromophores in the human skin provides crucial information for non-invasive skin diagnostics, particularly in clinical and dermatological applications [1,2]. However, only a few studies have reported chromophore concentration measurements at different skin depths [3,4]. This paper introduces a method for the tomographic measurement of skin chromophore concentrations using reflectance spectra. By considering the variations in hemoglobin content at different skin depths, we developed a dual-band skin reflectance spectral model and employed a hyperspectral camera to measure the in vivo spectral reflectance of the human skin. Chromophores including oxyhemoglobin, deoxyhemoglobin, blood oxygen, and melanin… More >

  • Open Access

    ARTICLE

    Laser-Ablated CdS and Ag2O Nanomaterials for High-Sensitivity Photodetectors

    Hameed H. Ahmed1, Thaer A. Mezher2,*, Marwan R. Rashid3

    Chalcogenide Letters, Vol.22, No.12, pp. 1055-1066, 2025, DOI:10.15251/CL.2025.2212.1055 - 10 December 2025

    Abstract Laser ablation in liquids (LAL), a hygienic and effective method for creating high-purity nanomaterials, was used in this study to create cadmium sulfide (CdS) and silver oxide (Ag2O) nanoparticles. The sputtering process was used to deposit the produced nanomaterials on porous silicon (PSi) substrates, and a number of assays were used to examine the samples’ structural, optical, and electrical characteristics. The CdS sample had a hexagonal crystal structure, according to X-ray diffraction (XRD) data, whereas the AgO sample had a cubic structure. The diameters of the nanoparticles in the two samples ranged from 22.64 nm for… More >

  • Open Access

    ARTICLE

    Thin-Film Solar Cell Based on Sb2(Sx,Se1−x)3 Solid Solution Films

    T. M. Razykov1, K. M. Kuchkarov1, R. T. Yuldoshov1, M. P. Pirimmatov1, R. R. Khurramov1, D. Z. Isakov1, M. A. Makhmudov1, A. Matmuratov1, J. G. Bekmirzoyev1, A. N. Olimov2

    Chalcogenide Letters, Vol.22, No.11, pp. 959-964, 2025, DOI:10.15251/CL.2025.2211.959

    Abstract This work presents the results of investigating the photovoltaic characteristics of Sb2(SxSe1−x)3 thin film solar cells manufactured on glass substrates with molybdenum coating using the chemical molecular beam deposition method. Illuminated IV and spectral response measurements on Sb2(SxSe1−x)3 alloy films show that the device with S/(S + Se) = 0.6 delivers the best performance, reaching 6.47% power-conversion efficiency with VOC = 523 mV, JSC = 27.2 mA cm−2 , and a fill factor of 46.71%. More >

  • Open Access

    PROCEEDINGS

    SEM-FEM Co-Simulation via Substructure Coordination for Train-Track-Tunnel-Soil System Dynamics

    Liu Pan, Lei Xu*, Bin Yan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012221

    Abstract To address the issue of computational inefficiency arising from the large dimensionality of dynamic matrices in the train-track-tunnel-soil (TTTS) dynamic model, this study integrates the spectral element method (SEM) and finite element method (FEM) to develop a highly efficient dynamic model for the TTTS system. The model leverages the distinct vibration characteristics of the near- and far- field regions of TTTS system, employing different modelling approaches: the FEM, known for its superior shape adaptability and precise high-frequency dynamic response computation, is applied to the tunnel and near-field soil; the SEM, recognized for its rapid convergence… More >

  • Open Access

    ARTICLE

    Modeling and Estimating Soybean Leaf Area Index and Biomass Using Machine Learning Based on Unmanned Aerial Vehicle-Captured Multispectral Images

    Sadia Alam Shammi1,2, Yanbo Huang1,*, Weiwei Xie1,2, Gary Feng1, Haile Tewolde1, Xin Zhang3, Johnie Jenkins1, Mark Shankle4

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2745-2766, 2025, DOI:10.32604/phyton.2025.068955 - 30 September 2025

    Abstract Crop leaf area index (LAI) and biomass are two major biophysical parameters to measure crop growth and health condition. Measuring LAI and biomass in field experiments is a destructive method. Therefore, we focused on the application of unmanned aerial vehicles (UAVs) in agriculture, which is a cost and labor-efficient method. Hence, UAV-captured multispectral images were applied to monitor crop growth, identify plant bio-physical conditions, and so on. In this study, we monitored soybean crops using UAV and field experiments. This experiment was conducted at the MAFES (Mississippi Agricultural and Forestry Experiment Station) Pontotoc Ridge-Flatwoods Branch… More >

  • Open Access

    ARTICLE

    Spectral Quasi-Linearization Study of Variable Viscosity Casson Nanofluid Flow under Buoyancy and Magnetic Fields

    B. Rajesh1, Fateh Mebarek-Oudina2,3,4,*, N. Vishnu Ganesh1, Qasem M. Al-Mdallal5, Sami Ullah Khan6, Murali Gundagnai7, Hillary Muzara8

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1243-1260, 2025, DOI:10.32604/fhmt.2025.066782 - 29 August 2025

    Abstract The behavior of buoyancy-driven magnetohydrodynamic (MHD) nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling, nuclear reactors, and metallurgical processes. This study focuses on the boundary layer flow of a Casson-based sodium alginate Fe3O4 nanofluid influenced by magnetic field-dependent viscosity and thermal radiation, as it interacts with a vertically stretching sheet under dissipative conditions. To manage the inherent nonlinearities, Lie group transformations are applied to reformulate the governing boundary layer equations into similarity forms. These reduced equations are then solved via the Spectral Quasi-Linearization Method (SQLM), ensuring high More >

  • Open Access

    ARTICLE

    Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method: Effects of Heat Internal Generation Due to Spectral Absorption

    Khadija Ibaararen, Mhammed Zaimi, Khadija El Ainaoui, El Mahdi Assaid*

    Energy Engineering, Vol.122, No.9, pp. 3487-3505, 2025, DOI:10.32604/ee.2025.067422 - 26 August 2025

    Abstract This study investigates the complex heat transfer dynamics in multilayer bifacial photovoltaic (bPV) solar modules under spectrally resolved solar irradiation. A novel numerical model is developed to incorporate internal heat generation resulting from optical absorption, grounded in the physical equations governing light-matter interactions within the module’s multilayer structure. The model accounts for reflection and transmission at each interface between adjacent layers, as well as absorption within individual layers, using the wavelength-dependent dielectric properties of constituent materials. These properties are used to calculate the spectral reflectance, transmittance, and absorption coefficients, enabling precise quantification of internal heat… More >

Displaying 1-10 on page 1 of 155. Per Page