Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024

    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open Access

    ARTICLE

    An Approach for Radar Quantitative Precipitation Estimation Based on Spatiotemporal Network

    Shengchun Wang1, Xiaozhong Yu1, Lianye Liu2, Jingui Huang1, *, Tsz Ho Wong3, Chengcheng Jiang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 459-479, 2020, DOI:10.32604/cmc.2020.010627 - 23 July 2020

    Abstract Radar quantitative precipitation estimation (QPE) is a key and challenging task for many designs and applications with meteorological purposes. Since the Z-R relation between radar and rain has a number of parameters on different areas, and the rainfall varies with seasons, the traditional methods are incapable of achieving high spatial and temporal resolution and thus difficult to obtain a refined rainfall estimation. This paper proposes a radar quantitative precipitation estimation algorithm based on the spatiotemporal network model (ST-QPE), which designs a convolutional time-series network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to address More >

Displaying 1-10 on page 1 of 2. Per Page