Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Flow Direction Level Traffic Flow Prediction Based on a GCN-LSTM Combined Model

    Fulu Wei1, Xin Li1, Yongqing Guo1,*, Zhenyu Wang2, Qingyin Li1, Xueshi Ma3

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2001-2018, 2023, DOI:10.32604/iasc.2023.035799 - 21 June 2023

    Abstract Traffic flow prediction plays an important role in intelligent transportation systems and is of great significance in the applications of traffic control and urban planning. Due to the complexity of road traffic flow data, traffic flow prediction has been one of the challenging tasks to fully exploit the spatiotemporal characteristics of roads to improve prediction accuracy. In this study, a combined flow direction level traffic flow prediction graph convolutional network (GCN) and long short-term memory (LSTM) model based on spatiotemporal characteristics is proposed. First, a GCN model is employed to capture the topological structure of… More >

  • Open Access

    ARTICLE

    Spatiotemporal Characteristics of Traffic Accidents in China, 2016–2019

    Pengfei Gong1,2, Qun Wang2,*, Junjun Zhu3

    Intelligent Automation & Soft Computing, Vol.29, No.1, pp. 31-42, 2021, DOI:10.32604/iasc.2021.017695 - 12 May 2021

    Abstract This study analyzed in-depth investigation reports for 418 traffic accidents with at least five deaths (TALFDs) in China from 2016 to 2019. Statistical analysis methods including hierarchical cluster analysis were employed to examine the distribution characteristics of these accidents. Accidents were found to be concentrated in July and August, and the distribution over the seven days of the week was relatively uniform; only Sunday had a higher number of accidents and deaths. In terms of 24-hour distribution, the one-hour periods with the most accidents and deaths were 8:00–9:00, 10:00–11:00, 14:00–15:00, and 18:00–19:00. Tibet, Qinghai, and… More >

Displaying 1-10 on page 1 of 2. Per Page