Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction

    Xinlu Zong*, Fan Yu, Zhen Chen, Xue Xia

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3517-3537, 2025, DOI:10.32604/cmc.2024.057494 - 17 February 2025

    Abstract Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a More >

  • Open Access

    ARTICLE

    Dense Spatial-Temporal Graph Convolutional Network Based on Lightweight OpenPose for Detecting Falls

    Xiaorui Zhang1,2,3,*, Qijian Xie1, Wei Sun3,4, Yongjun Ren1,2,3, Mithun Mukherjee5

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 47-61, 2023, DOI:10.32604/cmc.2023.042561 - 31 October 2023

    Abstract Fall behavior is closely related to high mortality in the elderly, so fall detection becomes an important and urgent research area. However, the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy. To solve the above problems, this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose. Lightweight OpenPose uses MobileNet as a feature extraction network, and the prediction layer uses bottleneck-asymmetric structure, thus reducing the amount of the network. The bottleneck-asymmetrical structure compresses the number of input… More >

Displaying 1-10 on page 1 of 2. Per Page