Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558 - 29 April 2023

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote… More >

Displaying 1-10 on page 1 of 1. Per Page