Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (168)
  • Open Access

    ARTICLE

    DAUNet: Detail-Aware U-Shaped Network for 2D Human Pose Estimation

    Xi Li1,2, Yuxin Li2, Zhenhua Xiao3,*, Zhenghua Huang1, Lianying Zou1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3325-3349, 2024, DOI:10.32604/cmc.2024.056464 - 18 November 2024

    Abstract Human pose estimation is a critical research area in the field of computer vision, playing a significant role in applications such as human-computer interaction, behavior analysis, and action recognition. In this paper, we propose a U-shaped keypoint detection network (DAUNet) based on an improved ResNet subsampling structure and spatial grouping mechanism. This network addresses key challenges in traditional methods, such as information loss, large network redundancy, and insufficient sensitivity to low-resolution features. DAUNet is composed of three main components. First, we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce… More >

  • Open Access

    ARTICLE

    MCBAN: A Small Object Detection Multi-Convolutional Block Attention Network

    Hina Bhanbhro1,*, Yew Kwang Hooi1, Mohammad Nordin Bin Zakaria1, Worapan Kusakunniran2, Zaira Hassan Amur1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2243-2259, 2024, DOI:10.32604/cmc.2024.052138 - 18 November 2024

    Abstract Object detection has made a significant leap forward in recent years. However, the detection of small objects continues to be a great difficulty for various reasons, such as they have a very small size and they are susceptible to missed detection due to background noise. Additionally, small object information is affected due to the downsampling operations. Deep learning-based detection methods have been utilized to address the challenge posed by small objects. In this work, we propose a novel method, the Multi-Convolutional Block Attention Network (MCBAN), to increase the detection accuracy of minute objects aiming to… More >

  • Open Access

    ARTICLE

    TGAIN: Geospatial Data Recovery Algorithm Based on GAIN-LSTM

    Lechan Yang1,*, Li Li2, Shouming Ma3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1471-1489, 2024, DOI:10.32604/cmc.2024.056379 - 15 October 2024

    Abstract Accurate geospatial data are essential for geographic information systems (GIS), environmental monitoring, and urban planning. The deep integration of the open Internet and geographic information technology has led to increasing challenges in the integrity and security of spatial data. In this paper, we consider abnormal spatial data as missing data and focus on abnormal spatial data recovery. Existing geospatial data recovery methods require complete datasets for training, resulting in time-consuming data recovery and lack of generalization. To address these issues, we propose a GAIN-LSTM-based geospatial data recovery method (TGAIN), which consists of two main works:… More >

  • Open Access

    ARTICLE

    Improving Generalization for Hyperspectral Image Classification: The Impact of Disjoint Sampling on Deep Models

    Muhammad Ahmad1,*, Manuel Mazzara2, Salvatore Distefano3, Adil Mehmood Khan4, Hamad Ahmed Altuwaijri5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 503-532, 2024, DOI:10.32604/cmc.2024.056318 - 15 October 2024

    Abstract Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was… More >

  • Open Access

    ARTICLE

    Delineating Groundwater Potential Zones Using Geospatial and Analytical Hierarchy Process Techniques in the Upper Omo-Gibe Basin, Ethiopia

    Yonas Hagos1,2,*, Zelalem Bedaso1, Mulugeta Kebede3

    Revue Internationale de Géomatique, Vol.33, pp. 399-425, 2024, DOI:10.32604/rig.2024.053975 - 27 September 2024

    Abstract In regions with unpredictable rainfall and limited water supply, it’s crucial to pinpoint areas with high potential for groundwater and find the best spots for groundwater resource development. This study utilizes the Analytic Hierarchy Process (AHP) in combination with Geographic Information Systems (GIS) to evaluate the potential groundwater zones in the Gombora watershed within the Omo Gibe basin in Ethiopia. Combining these two tools provided a detailed map showing potential groundwater areas. These zones are determined based on various thematic maps containing information about geology, soil texture, lineament density, slope, land use, and drainage density.… More >

  • Open Access

    ARTICLE

    Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with Explainable AI

    Sannasi Chakravarthy1, Bharanidharan Nagarajan2, Surbhi Bhatia Khan3,7,*, Vinoth Kumar Venkatesan2, Mahesh Thyluru Ramakrishna4, Ahlam Al Musharraf5, Khursheed Aurungzeb6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 5029-5045, 2024, DOI:10.32604/cmc.2024.052531 - 12 September 2024

    Abstract Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-B0 having a Spatial Attention Layer with More >

  • Open Access

    ARTICLE

    Evaluation of Multi-Temporal-Spatial Scale Adjustment Capability and Cluster Optimization Operation Method for Distribution Networks with Distributed Photovoltaics

    Jiaxin Qiao1, Yuchen Hao2, Yingqi Liao3, Fang Liang3, Jing Bian1,*

    Energy Engineering, Vol.121, No.9, pp. 2655-2680, 2024, DOI:10.32604/ee.2024.049509 - 19 August 2024

    Abstract The massive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations. To accurately assess the flexible regulation capabilities of distribution stations, a multi-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics, considering different geographical locations, coverage areas, and response capabilities. Firstly, the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed, and a resource regulation capability model is established to quantify the adjustable range of different regulation resources. On… More >

  • Open Access

    ARTICLE

    PARE: Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things

    Peicong He, Yang Xin*, Yixian Yang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3067-3084, 2024, DOI:10.32604/cmc.2024.054777 - 15 August 2024

    Abstract The proliferation of intelligent, connected Internet of Things (IoT) devices facilitates data collection. However, task workers may be reluctant to participate in data collection due to privacy concerns, and task requesters may be concerned about the validity of the collected data. Hence, it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing (SC) data collection tasks with IoT. To this end, this paper proposes a privacy-preserving data reliability evaluation for SC in IoT, named PARE. First, we design a data uploading format using blockchain More >

  • Open Access

    ARTICLE

    Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things

    Mengmeng Zhao1,2,3, Haipeng Peng1,2,*, Lixiang Li1,2, Yeqing Ren1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2815-2837, 2024, DOI:10.32604/cmc.2024.053765 - 15 August 2024

    Abstract In the Industrial Internet of Things (IIoT), sensors generate time series data to reflect the working state. When the systems are attacked, timely identification of outliers in time series is critical to ensure security. Although many anomaly detection methods have been proposed, the temporal correlation of the time series over the same sensor and the state (spatial) correlation between different sensors are rarely considered simultaneously in these methods. Owing to the superior capability of Transformer in learning time series features. This paper proposes a time series anomaly detection method based on a spatial-temporal network and… More >

  • Open Access

    ARTICLE

    An Enhanced GAN for Image Generation

    Chunwei Tian1,2,3,4, Haoyang Gao2,3, Pengwei Wang2, Bob Zhang1,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 105-118, 2024, DOI:10.32604/cmc.2024.052097 - 18 July 2024

    Abstract Generative adversarial networks (GANs) with gaming abilities have been widely applied in image generation. However, gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes. Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation. In this paper, we propose an enhanced GAN via improving a generator for image generation (EIGGAN). EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness… More >

Displaying 1-10 on page 1 of 168. Per Page