Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (158)
  • Open Access

    ARTICLE

    Mesures d’accessibilité géographique aux soins de santé dans le district sanitaire de Bougouni au Mali

    Sidiki Traoré1,2,*

    Revue Internationale de Géomatique, Vol.33, pp. 167-182, 2024, DOI:10.32604/rig.2024.052696

    Abstract Au Mali, l’accès à la santé est une préoccupation majeure. Il est devenu une priorité nationale depuis la déclaration d’Alma-Ata en 1978. Dès lors, des efforts importants ont été consentis par l’État et ses partenaires pour atteindre cet objectif. Ces efforts semblent insuffisants dans le district sanitaire de Bougouni, car, plus de la moitié de la population reste très loin des services de santé de base. Face à ce constat, évaluer l’accessibilité géographique aux soins de santé est essentiel pour identifier les localités qui ont été laissées pour compte, d’’où l’objet de cette recherche dans… More >

  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

  • Open Access

    ARTICLE

    Direct Pointwise Comparison of FE Predictions to StereoDIC Measurements: Developments and Validation Using Double Edge-Notched Tensile Specimen

    Troy Myers1, Michael A. Sutton1,*, Hubert Schreier2, Alistair Tofts2, Sreehari Rajan Kattil1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1263-1298, 2024, DOI:10.32604/cmes.2024.048743

    Abstract To compare finite element analysis (FEA) predictions and stereovision digital image correlation (StereoDIC) strain measurements at the same spatial positions throughout a region of interest, a field comparison procedure is developed. The procedure includes (a) conversion of the finite element data into a triangular mesh, (b) selection of a common coordinate system, (c) determination of the rigid body transformation to place both measurements and FEA data in the same system and (d) interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates. For an aluminum Al-6061 double edge More >

  • Open Access

    ARTICLE

    Spatial and Contextual Path Network for Image Inpainting

    Dengyong Zhang1,2, Yuting Zhao1,2, Feng Li1,2, Arun Kumar Sangaiah3,4,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 115-133, 2024, DOI:10.32604/iasc.2024.040847

    Abstract Image inpainting is a kind of use known area of information technology to repair the loss or damage to the area. Image feature extraction is the core of image restoration. Getting enough space for information and a larger receptive field is very important to realize high-precision image inpainting. However, in the process of feature extraction, it is difficult to meet the two requirements of obtaining sufficient spatial information and large receptive fields at the same time. In order to obtain more spatial information and a larger receptive field at the same time, we put forward… More >

  • Open Access

    ARTICLE

    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data… More >

  • Open Access

    ARTICLE

    Image Fusion Using Wavelet Transformation and XGboost Algorithm

    Shahid Naseem1, Tariq Mahmood2,3, Amjad Rehman Khan2, Umer Farooq1, Samra Nawazish4, Faten S. Alamri5,*, Tanzila Saba2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 801-817, 2024, DOI:10.32604/cmc.2024.047623

    Abstract Recently, there have been several uses for digital image processing. Image fusion has become a prominent application in the domain of imaging processing. To create one final image that proves more informative and helpful compared to the original input images, image fusion merges two or more initial images of the same item. Image fusion aims to produce, enhance, and transform significant elements of the source images into combined images for the sake of human visual perception. Image fusion is commonly employed for feature extraction in smart robots, clinical imaging, audiovisual camera integration, manufacturing process monitoring,… More >

  • Open Access

    ARTICLE

    MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

    Xiangyan Tang1,2, Chengchun Ruan1,2,*, Xiulai Li2,3, Binbin Li1,2, Cebin Fu1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 983-1003, 2024, DOI:10.32604/cmc.2024.047541

    Abstract Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which incorporates an additional prediction head, denoted as P2, to… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case… More >

  • Open Access

    ARTICLE

    Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios

    Lyuchao Liao1,2, Hankun Xiao2,*, Pengqi Xing2, Zhenhua Gan1,2, Youpeng He2, Jiajun Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 557-576, 2024, DOI:10.32604/cmes.2024.047452

    Abstract Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imperfect data in perceiving environmental information, rendering them a vital issue in the practical application of autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in the Roundabouts. Specifically, the… More >

  • Open Access

    ARTICLE

    Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism

    Lujuan Deng, Ruochong Fu*, Zuhe Li, Boyi Liu, Mengze Xue, Yuhao Cui

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4071-4089, 2024, DOI:10.32604/cmc.2024.048200

    Abstract Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different More >

Displaying 1-10 on page 1 of 158. Per Page