Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Two-Phase Paradigm for Joint Entity-Relation Extraction

    Bin Ji1, Hao Xu1, Jie Yu1, Shasha Li1, Jun Ma1, Yuke Ji2,*, Huijun Liu1

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1303-1318, 2023, DOI:10.32604/cmc.2023.032168 - 22 September 2022

    Abstract An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task. However, these models sample a large number of negative entities and negative relations during the model training, which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance. In order to address the above issues, we propose a two-phase paradigm for the span-based joint entity and relation extraction, which involves classifying the entities and relations in the first phase, and predicting the types of these entities and relations in the second… More >

  • Open Access

    ARTICLE

    A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction

    Kun Ding1, Shanshan Liu1, Yuhao Zhang2, Hui Zhang1, Xiaoxiong Zhang1,*, Tongtong Wu2,3, Xiaolei Zhou1

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 377-389, 2021, DOI:10.32604/cmc.2021.016301 - 22 March 2021

    Abstract The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes. For entity and relation extraction in a specific domain, we propose a hybrid neural framework consisting of two parts: a span-based model and a graph-based model. The span-based model can tackle overlapping problems compared with BILOU methods, whereas the graph-based model treats relation prediction as graph classification. Our main contribution is to incorporate external lexical and syntactic knowledge of a specific domain, such as domain dictionaries and dependency structures from texts, into end-to-end neural models. More >

Displaying 1-10 on page 1 of 2. Per Page