Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (116)
  • Open Access

    ARTICLE

    Automatic Fetal Segmentation Designed on Computer-Aided Detection with Ultrasound Images

    Mohana Priya Govindarajan*, Sangeetha Subramaniam Karuppaiya Bharathi

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2967-2986, 2024, DOI:10.32604/cmc.2024.055536 - 18 November 2024

    Abstract In the present research, we describe a computer-aided detection (CAD) method aimed at automatic fetal head circumference (HC) measurement in 2D ultrasonography pictures during all trimesters of pregnancy. The HC might be utilized toward determining gestational age and tracking fetal development. This automated approach is particularly valuable in low-resource settings where access to trained sonographers is limited. The CAD system is divided into two steps: to begin, Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal skull. We identified the HC using dynamic programming,… More >

  • Open Access

    ARTICLE

    Sound Transmission Loss of Helmholtz Resonators with Elastic Bottom Plate

    Liang Yang1,2, Jie Zhang1, Jinfeng Xia1, Siwen Zhang1, Yang Yang3, Zhigang Chu2,*

    Sound & Vibration, Vol.58, pp. 171-183, 2024, DOI:10.32604/sv.2024.056968 - 21 October 2024

    Abstract Helmholtz resonators are widely used to control low frequency noise propagating in pipes. In this paper, the elastic bottom plate of Helmholtz resonator is simplified as a single degree of freedom (SDOF) vibration system with acoustic excitation, and a one-dimensional lumped-parameter analytical model was developed to accurately characterize the structure-acoustic coupling and sound transmission loss (STL) of a Helmholtz resonator with an elastic bottom plate. The effect of dynamical parameters of elastic bottom plate on STL is analyzed by utilizing the model. A design criterion to circumvent the effect of wall elasticity of Helmholtz resonators More >

  • Open Access

    ARTICLE

    High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks, Vortices and Sound Waves in Materials Science Problems

    Zhenhua Jiang1,*, Xi Deng2,3, Xin Zhang1, Chao Yan1, Feng Xiao4, Jian Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2183-2204, 2024, DOI:10.32604/fdmp.2024.053231 - 23 September 2024

    Abstract Shock waves, characterized by abrupt changes in pressure, temperature, and density, play a significant role in various materials science processes involving fluids. These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques. Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales. This work suggests a high-order discontinuous Galerkin (DG) method with a finite volume (FV) subcell limiting strategies to achieve better subcell resolution and lower numerical More >

  • Open Access

    ARTICLE

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

    Ivan Sboev1,*, Tatyana Lyubimova2,3, Konstantin Rybkin3, Michael Kuchinskiy2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1425-1439, 2024, DOI:10.32604/fdmp.2024.051341 - 27 June 2024

    Abstract The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis, extraction and separation. One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber. Cavitation has a strong impact on the surface degradation mechanisms. In this work, a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics. The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions More > Graphic Abstract

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

  • Open Access

    ARTICLE

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

    Michael Kuchinskiy1,2,*, Tatyana Lyubimova1,2, Konstantin Rybkin2, Anastasiia Sadovnikova2, Vasiliy Galishevskiy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1093-1102, 2024, DOI:10.32604/fdmp.2024.050059 - 07 June 2024

    Abstract Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaning and chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlled by changing relevant influential parameters. In particular, in this work, we experimentally investigate the effect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at a frequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualization using heat maps. It is found that at low NaCl concentration (0.3 mol/L), the More > Graphic Abstract

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

  • Open Access

    REVIEW

    Machine Learning-Based Intelligent Auscultation Techniques in Congenital Heart Disease: Application and Development

    Yang Wang#, Xun Yang#, Mingtang Ye, Yuhang Zhao, Runsen Chen, Min Da, Zhiqi Wang, Xuming Mo, Jirong Qi*

    Congenital Heart Disease, Vol.19, No.2, pp. 219-231, 2024, DOI:10.32604/chd.2024.048314 - 16 May 2024

    Abstract Congenital heart disease (CHD), the most prevalent congenital ailment, has seen advancements in the “dual indicator” screening program. This facilitates the early-stage diagnosis and treatment of children with CHD, subsequently enhancing their survival rates. While cardiac auscultation offers an objective reflection of cardiac abnormalities and function, its evaluation is significantly influenced by personal experience and external factors, rendering it susceptible to misdiagnosis and omission. In recent years, continuous progress in artificial intelligence (AI) has enabled the digital acquisition, storage, and analysis of heart sound signals, paving the way for intelligent CHD auscultation-assisted diagnostic technology. Although More > Graphic Abstract

    Machine Learning-Based Intelligent Auscultation Techniques in Congenital Heart Disease: Application and Development

  • Open Access

    ARTICLE

    A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging

    K. Umapathi1,*, S. Shobana1, Anand Nayyar2, Judith Justin3, R. Vanithamani3, Miguel Villagómez Galindo4, Mushtaq Ahmad Ansari5, Hitesh Panchal6,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1875-1901, 2024, DOI:10.32604/cmc.2024.047961 - 15 May 2024

    Abstract Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation and classification. The main objective of the research paper is to develop an advanced methodology for breast ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and machine learning-based classification. A unique approach… More >

  • Open Access

    ARTICLE

    Secure Transmission of Compressed Medical Image Sequences on Communication Networks Using Motion Vector Watermarking

    Rafi Ullah1,*, Mohd Hilmi bin Hasan1, Sultan Daud Khan2, Mussadiq Abdul Rahim3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3283-3301, 2024, DOI:10.32604/cmc.2024.046305 - 26 March 2024

    Abstract Medical imaging plays a key role within modern hospital management systems for diagnostic purposes. Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed, all while upholding image quality. Moreover, an increasing number of hospitals are embracing cloud computing for patient data storage, necessitating meticulous scrutiny of server security and privacy protocols. Nevertheless, considering the widespread availability of multimedia tools, the preservation of digital data integrity surpasses the significance of compression alone. In response to this concern, we propose a secure storage and transmission solution for compressed medical image sequences, such as… More >

  • Open Access

    EDITORIAL

    Femoral Access with Ultrasound-Guided Puncture and Z-Stitch Hemostasis for Adults with Congenital Heart Diseases Undergoing Electrophysiological Procedures

    Fu Guan1,*, Matthias Gass2, Florian Berger2, Heiko Schneider1, Firat Duru1,3, Thomas Wolber1,3,*

    Congenital Heart Disease, Vol.19, No.1, pp. 85-92, 2024, DOI:10.32604/chd.2024.047266 - 20 March 2024

    Abstract Aims: Although the application of ultrasound-guided vascular puncture and Z-stitch hemostasis to manage femoral access has been widely utilized, there is limited data on this combined application in adult congenital heart disease (ACHD) patients undergoing electrophysiological (EP) procedures. We sought to evaluate the safety and efficacy of ultrasound-guided puncture and postprocedural Z-stitch hemostasis for ACHD patients undergoing EP procedures. Methods and Results: The population of ACHD patients undergoing transfemoral EP procedures at the University of Zurich Heart Center between January 2019 and December 2022 was observed and analyzed. During the study period, femoral access (left/right, arterial/venous)… More >

  • Open Access

    ARTICLE

    Computational Verification of Low-Frequency Broadband Noise from Wind Turbine Blades Using Semi-Empirical Methods

    Vasishta Bhargava Nukala*, Chinmaya Prasad Padhy

    Sound & Vibration, Vol.58, pp. 133-150, 2024, DOI:10.32604/sv.2024.047762 - 19 March 2024

    Abstract A significant aerodynamic noise from wind turbines arises when the rotating blades interact with turbulent flows. Though the trailing edge of the blade is an important source of noise at high frequencies, the present work deals with the influence of turbulence distortion on leading edge noise from wind turbine blades which becomes significant in low-frequency regions. Four quasi-empirical methods are studied to verify the accuracy of turbulent inflow noise predicted at low frequencies for a 2 MW horizontal axis wind turbine. Results have shown that all methods exhibited a downward linear trend in noise spectra More >

Displaying 1-10 on page 1 of 116. Per Page