Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    A Gel-Based Solidification Technology for Large Fracture Plugging

    Kunjian Wang1, Ruibin He1, Qianhua Liao1, Kun Xu1, Wen Wang1, Kan Chen2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 563-578, 2024, DOI:10.32604/fdmp.2023.030152 - 12 January 2024

    Abstract Fault fractures usually have large openings and considerable extension. Accordingly, cross-linked gel materials are generally considered more suitable plugging agents than water-based gels because the latter often undergo contamination via formation water, which prevents them from being effective over long times. Hence, in this study, a set of oil-based composite gels based on waste grease and epoxy resin has been developed. These materials have been observed to possess high compressive strength and resistance to the aforementioned contamination, thereby leading to notable increase in plugging success rate. The compressive strength, thickening time, and resistance to formation More >

  • Open Access

    ARTICLE

    Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers

    Weiting Jiang1,*, Lei Zhao1,*, Chongyang Wang2, Tingni He1, Weiguo Pan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2597-2611, 2023, DOI:10.32604/fdmp.2023.027504 - 25 June 2023

    Abstract When a brazed plate heat exchanger is used as an evaporator, the working mass in the channel may undergo solidification, thereby hindering the refrigeration cycle. In this study the liquid solidification process and its optimization in a brazed plate heat exchanger are investigated numerically for different inlet velocities; moreover, different levels of corrugation are considered. The results indicate that solidification first occurs around the contacts, followed by the area behind the contacts. It is also shown that dead flow zones exist in the sharp areas and such areas are prone to liquid solidification. After optimization, More >

  • Open Access

    ARTICLE

    How Child Maltreatment Enduringly Impacts Aggression: A Perspective Based on Personality Solidification

    Yunqi Hu1,2,3,#, Yanhui Xiang1,2,3,#,*

    International Journal of Mental Health Promotion, Vol.24, No.6, pp. 945-957, 2022, DOI:10.32604/ijmhp.2022.019917 - 28 September 2022

    Abstract It has been shown that early experiences of maltreatment can stably influence an individual’s internal and external aggressive behavior in adulthood. And on what mechanisms do this stability arise? From the perspective of personality solidification theory, this study sample of 1951 primary and secondary school students was used to explore the relationship between child maltreatment, Big Five personality and internalized and externalized aggression, as well as the different mechanisms of differentiation of personality components in child maltreatment on two different natures of aggression, using four scales: The Childhood Trauma Questionnaire (CTQ), Revised NEO Personality Inventory More >

  • Open Access

    ARTICLE

    Development of Steel Slag-Based Solidification/Stabilization Materials for High Moisture Content Soil

    Yu Jia1, Sudong Hua1,*, Liying Qian2, Xiaojian Ren2, Jie Zuo3, Yanfang Zhang3

    Journal of Renewable Materials, Vol.10, No.3, pp. 735-749, 2022, DOI:10.32604/jrm.2022.016819 - 28 September 2021

    Abstract To solve the problems of high moisture content, high viscosity, and poor engineering mechanical properties of soil, this paper using with steel slag (SS) and desulfurization ash (DS) as initial raw materials, realizing the cooperative treatment of solid waste and solidification of silt soil. The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption. According to blended cement of various SS contents and inspected compressive strength performances, the most suitable raw materials ratio was selected. The best formula for this curing agent is cement:steel slag = 3:7… More >

  • Open Access

    ARTICLE

    ESTIMATION AND VALIDATION OF INTERFACIAL HEAT TRANSFER COEFFICIENT DURING SOLIDIFICATION OF SPHERICAL SHAPED ALUMINUM ALLOY (AL 6061) CASTING USING INVERSE CONTROL VOLUME TECHNIQUE

    L. Anna Gowsalyaa , P.D. Jeyakumarb,*, R. Rajaramanc,†, R. Velrajd

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.21

    Abstract Solidification of casting is a complex phenomenon which requires accurate input to simulate for real time applications. Interfacial heat transfer coefficient (IHTC) is an important input parameter for the simulation process. The IHTC is varying with respect to time during solidification and the exact value is to be given as input for the accurate simulation of the casting process. In this work an attempt is made to estimate the IHTC during solidification of spherical shaped aluminum alloy component with sand mould. The mould surface heat flux and mould surface temperatures are estimated by inverse control More >

  • Open Access

    ABSTRACT

    Numerical Modeling of Solid Movement in Phase Change Processes

    Igor Vušanović1,*, Vaughan R Voller2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 70-70, 2019, DOI:10.32604/icces.2019.05185

    Abstract In the modeling of liquid to solid phase change processes the movement of the solid phase (e.g., the grains that form when solidifying an alloy) can have a significant impact on the timing and pattern of the process. While a number of solidification models account for the movement of the solid phase, additional analysis is needed to fully understand the phenomena and guide in the selection of appropriate numerical technologies for its resolution. Towards this end, here, we introduce a reduced complexity model (RCM) to describe the solidification of an initially liquid binary material flowing… More >

  • Open Access

    ARTICLE

    The Effect of the Fin Length on the Solidification Process in a Rectangular Enclosure with Internal Fins

    Laila Khatra1,*, Hamid El Qarnia1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 125-137, 2019, DOI:10.32604/fdmp.2019.04713

    Abstract The aim of the proposed work is to study the solidification process within a rectangular enclosure provided with three internal rectangular fins attached to the left vertical wall of the cavity. This latest is filled with a phase change material (PCM), initially liquid, at a temperature above its melting temperature. The solidification process was initiated by cooling the left wall and fins to a temperature lower than the melting temperature. In order to study and examine the thermal behavior and thermal performance of the proposed system, a mathematical model, based on the conservation equations of More >

  • Open Access

    ARTICLE

    INTERFACIAL HEAT TRANSFER COEFFICIENT ESTIMATION DURING SOLIDIFICATION OF RECTANGULAR ALUMINUM ALLOY CASTING USING TWO DIFFERENT INVERSE METHODS

    R. Rajaramana , L. Anna Gowsalyab,*, R. Velrajc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.23

    Abstract To get accurate results in casting simulations, prediction of interfacial heat transfer coefficient (IHTC) is imperative. In this paper an attempt has been made for estimating IHTC during solidification process of a rectangular aluminium alloy casting in a sand mould. The cast temperature and mould temperature are measured during the experimental process at different time intervals during the process of solidification. Two different inverse methods, namely control volume and Beck’s approach are used to estimate the heat flux and temperature at the mould surface by using the experimentally measured temperatures. In the case of control More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed… More >

  • Open Access

    ARTICLE

    THE EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE SOLIDIFICATION OF A POROUS CERAMIC CASTING

    Frantisek Kavickaa,*, Jana Dobrovskab, Karel Stranskya, Bohumil Sekaninaa, Josef Stetinaa

    Frontiers in Heat and Mass Transfer, Vol.3, No.2, pp. 1-9, 2012, DOI:10.5098/hmt.v3.2.3002

    Abstract Corundo-baddeleyit material (CBM) – EUCOR – is a heat- and wear-resistant material even at extreme temperatures. This article introduces an original numerical model of solidification and cooling of this material in a non-metallic mold. The second, cooperating model of chemical heterogeneity and its application on EUCOR samples prove that the applied method of measuring the chemical heterogeneity provides the detailed quantitative information on the material structure and makes it possible to analyze the solidification process. The verification of both numerical models was conducted on a real cast 350 x 200 x 400 mm block. More >

Displaying 1-10 on page 1 of 27. Per Page