Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    PROCEEDINGS

    Vat Photopolymerization 3D Printing of NiO-YSZ Anode for Solid Oxide Fuel Cells

    Jinsi Yuan, Haijiang Wang*, Jiaming Bai*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011073

    Abstract Solid oxide fuel cells (SOFCs) have attracted considerable attention for their high efficiency, environmental advantages, and versatility in fuel sources. Research has shown that optimizing the structure of SOFCs can lead to significant performance improvements. Additive manufacturing (AM) has emerged as a promising technology for geometrical optimization of SOFCs, owing to its capability to create complex and programmable structures. However, fabricating three-dimensional electrode structures with fine, highly resolved features remains a significant challenge. Herein, a vat photopolymerization (VPP) 3D printing process was developed for fabricating the Nickel Oxide-Yttria Stabilized Zirconia (NiO-YSZ) anode structure of SOFC.… More >

  • Open Access

    ARTICLE

    Biomimetic Flow Field Inspired by Sunflower Phyllotaxis: Design and Performance Optimization for Solid Oxide Fuel Cells

    Liangxiu Zhang1, Qinghai Zhao2,3,*, Feiteng Cheng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2177-2199, 2025, DOI:10.32604/fdmp.2025.068499 - 30 September 2025

    Abstract To advance the performance of solid oxide fuel cells (SOFCs), this work proposes a novel biomimetic flow field architecture inspired by the geometric arrangement of sunflower florets. Drawing on natural principles of optimal spatial distribution, a multi-physics simulation model of the resulting Sunflower Bionic Flow Field (SBFF) was developed. Building upon this foundation, an enhanced configuration was introduced by integrating an annular channel, yielding a modified variant referred to as Modified Sunflower Bionic Flow Field (MSBFF). For comparative purposes, a conventional Traditional Parallel Flow Field (TPFF) was also analyzed under identical conditions. Simulation results underscore… More >

  • Open Access

    ARTICLE

    Recovery of Solid Oxide Fuel Cell Waste Heat by Thermoelectric Generators and Alkali Metal Thermoelectric Converters

    Wenxia Zhu*, Baishu Chen, Lexin Wang, Chunxiang Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1559-1573, 2024, DOI:10.32604/fhmt.2024.047351 - 30 October 2024

    Abstract A Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism. The electrochemical reaction of a solid oxide fuel cell (SOFC) generates heat, and this heat can be recovered and put to use in a waste heat recovery system. In addition to preheating the fuel and oxidant, producing steam for industrial use, and heating and cooling enclosed rooms, this waste heat can be used for many more productive uses. The large waste heat produced by SOFCs is a worry that must… More >

  • Open Access

    ARTICLE

    Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City

    Bachir Melzi1, Nesrine Kefif2, Mamdouh El Haj Assad3,*, Haleh Delnava4, Abdulkadir Hamid5

    Energy Engineering, Vol.118, No.6, pp. 1767-1781, 2021, DOI:10.32604/EE.2021.017270 - 10 September 2021

    Abstract This work presents a hybrid power system consisting of photovoltaic and solid oxide fuel cell (PV-SOFC) for electricity production and hydrogen production. The simulation of this hybrid system is adjusted for Bou-Zedjar city in north Algeria. Homer software was used for this simulation to calculate the power output and the total net present cost. The method used depends on the annual average monthly values of clearness index and radiation for which the energy contributions are determined for each component of PV/SOFC hybrid system. The economic study is more important criterion in the proposed hybrid system, More >

  • Open Access

    ARTICLE

    Computer Modeling of Ionic Conductivity in Low Temperature Doped Ceria Solid Electrolytes

    Shu-Feng Lee1, Che-Wun Hong1,2

    CMC-Computers, Materials & Continua, Vol.12, No.3, pp. 223-236, 2009, DOI:10.3970/cmc.2009.012.223

    Abstract Solid oxides, such as ceria (CeO2) doped with cations of lower valance, are potential electrolytes for future solid oxide fuel cells. This is due to the theoretically high ionic conductivity at low operation temperature. This paper investigates the feasibility of two potential electrolytes which are samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) to replace the traditional yttria-stablized zirconia (YSZ). Molecular simulation techniques were employed to study the influence of different dopant concentrations at different operation temperatures on the ionic conductivity from the atomistic perspective. Simulation results show that the optimized ionic conductivity occurs at 11.11mol% concentration More >

Displaying 1-10 on page 1 of 5. Per Page