Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    ARTICLE

    Impact of Different Rooftop Coverings on Photovoltaic Panel Temperature

    Aws Al-Akam1,*, Ahmed A. Abduljabbar2, Ali Jaber Abdulhamed1

    Energy Engineering, Vol.121, No.12, pp. 3761-3777, 2024, DOI:10.32604/ee.2024.055198 - 22 November 2024

    Abstract Photovoltaic (PV) panels are essential to the global transition towards sustainable energy, offering a clean, renewable source that reduces reliance on fossil fuels and mitigates climate change. High temperatures can significantly affect the performance of photovoltaic (PV) panels by reducing their efficiency and power output. This paper explores the consequential effect of various rooftop coverings on the thermal performance of photovoltaic (PV) panels. It investigates the relationship between the type of rooftop covering materials and the efficiency of PV panels, considering the thermal performance and its implications for enhancing their overall performance and sustainability. The… More >

  • Open Access

    ARTICLE

    Enhancing Solar Energy Production Forecasting Using Advanced Machine Learning and Deep Learning Techniques: A Comprehensive Study on the Impact of Meteorological Data

    Nataliya Shakhovska1,2,*, Mykola Medykovskyi1, Oleksandr Gurbych1,3, Mykhailo Mamchur1,3, Mykhailo Melnyk1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3147-3163, 2024, DOI:10.32604/cmc.2024.056542 - 18 November 2024

    Abstract The increasing adoption of solar photovoltaic systems necessitates accurate forecasting of solar energy production to enhance grid stability, reliability, and economic benefits. This study explores advanced machine learning (ML) and deep learning (DL) techniques for predicting solar energy generation, emphasizing the significant impact of meteorological data. A comprehensive dataset, encompassing detailed weather conditions and solar energy metrics, was collected and preprocessed to improve model accuracy. Various models were developed and trained with different preprocessing stages. Finally, three datasets were prepared. A novel hour-based prediction wrapper was introduced, utilizing external sunrise and sunset data to restrict… More >

  • Open Access

    ARTICLE

    A Novel Integrated Photovoltaic System with a Three-Dimensional Pulsating Heat Pipe

    Mahyar Kargaran*, Hamid Reza Goshayeshi, Ali Reza Alizadeh Jajarm

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1461-1476, 2024, DOI:10.32604/fhmt.2024.056284 - 30 October 2024

    Abstract Solar energy is a valuable renewable energy source, and photovoltaic (PV) systems are a practical approach to harnessing this energy. Nevertheless, low energy efficiency is considered a major setback of the system. Moreover, high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard. Employing pulsating heat pipes (PHPs) is an innovative and useful approach to improving solar panel performance. This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe, while graphene oxide nanofluid with three More >

  • Open Access

    ARTICLE

    Performance Evaluation of an Evaporative Cooling Pad for Humidification -Dehumidification Desalination

    Ibtissam El Aouni, Hicham Labrim, Elhoussaine Ouabida, Ahmed Ait Errouhi, Rachid El Bouayadi, Driss Zejli, Aouatif Saad*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2323-2335, 2024, DOI:10.32604/fdmp.2024.050611 - 23 September 2024

    Abstract The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective, efficient and environmentally friendly way. The desalination technique by humidification-dehumidification is non-conventional approach suitable for areas with low infrastructure (such as rural and decentralized regions) since it does not require permanent maintenance. In this study, this technology is implemented by using solar energy as a source of thermal power. A seawater desalination unit is considered, which consists of a chamber with two evaporators (humidifiers), a wetted porous material made of a corrugated cellulose cardboard and a… More >

  • Open Access

    REVIEW

    Solar- and/or Radiative Cooling-Driven Thermoelectric Generators: A Critical Review

    Jinglong Wang, Lin Lu*, Kai Jiao

    Energy Engineering, Vol.121, No.10, pp. 2681-2718, 2024, DOI:10.32604/ee.2024.051051 - 11 September 2024

    Abstract Thermoelectric generators (TEGs) play a critical role in collecting renewable energy from the sun and deep space to generate clean electricity. With their environmentally friendly, reliable, and noise-free operation, TEGs offer diverse applications, including areas with limited power infrastructure, microelectronic devices, and wearable technology. The review thoroughly analyses TEG system configurations, performance, and applications driven by solar and/or radiative cooling, covering non-concentrating, concentrating, radiative cooling-driven, and dual-mode TEGs. Materials for solar absorbers and radiative coolers, simulation techniques, energy storage management, and thermal management strategies are explored. The integration of TEGs with combined heat and power More >

  • Open Access

    REVIEW

    A Comprehensive Review of Design and Technological Advancements across Various Types of Solar Dryers

    Ganesh There*, Rohit Sharma*

    Energy Engineering, Vol.121, No.10, pp. 2851-2892, 2024, DOI:10.32604/ee.2024.049506 - 11 September 2024

    Abstract This analysis investigates the widespread use of solar drying methods and designs in developing countries, particularly for agricultural products like fruits, vegetables, and bee pollen. Traditional techniques like hot air oven drying and open sun drying have drawbacks, including nutrient loss and exposure to harmful particles. Solar and thermal drying are viewed as sustainable solutions because they rely on renewable resources. The article highlights the advantages of solar drying, including waste reduction, increased productivity, and improved pricing. It is also cost-effective and energy-efficient. The review study provides an overview of different solar drying systems and… More > Graphic Abstract

    A Comprehensive Review of Design and Technological Advancements across Various Types of Solar Dryers

  • Open Access

    ARTICLE

    Exergy Analysis of a Solar Vapor Compression Refrigeration System Using R1234ze(E) as an Environmentally Friendly Replacement of R134a

    Zakaria Triki1, Ahmed Selloum1, Younes Chiba1, Hichem Tahraoui1,2, Dorsaf Mansour3, Abdeltif Amrane4,*, Meriem Zamouche5, Mohammed Kebir6, Jie Zhang7

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1107-1128, 2024, DOI:10.32604/fhmt.2024.052223 - 30 August 2024

    Abstract Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy. The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment. Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems. In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration (SP-VCR) system in the region of Ghardaïa (Southern Algeria) utilizing R1234ze(E) fluid as an eco-friendly substitute for R134a refrigerant. A MATLAB-based numerical model was… More >

  • Open Access

    ARTICLE

    Simulation and Optimization of Energy Efficiency and Total Enthalpy Analysis of Sand Based Packed Bed Solar Thermal Energy Storage

    Matiewos Mekonen Abera1,2,*, Venkata Ramayya Ancha1, Balewgize Amare1, L. Syam Sundar3, Kotturu V. V. Chandra Mouli4, Sambasivam Sangaraju5

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1043-1070, 2024, DOI:10.32604/fhmt.2024.049525 - 30 August 2024

    Abstract This study is focused on the simulation and optimization of packed-bed solar thermal energy storage by using sand as a storage material and hot-water is used as a heat transfer fluid and storage as well. The analysis has been done by using the COMSOL multi-physics software and used to compute an optimization charging time of the storage. Parameters that control this optimization are storage height, storage diameter, heat transfer fluid flow rate, and sand bed particle size. The result of COMSOL multi-physics optimized thermal storage has been validated with Taguchi method. Accordingly, the optimized parameters… More >

  • Open Access

    ARTICLE

    Forestvoltaics, Floatovoltaics and Building Applied Photovoltaics (BAPV) Potential for a University Campus

    Rittick Maity1,2, Muhammad Khairul Imran bin Ahmad Shuhaimi3, Kumarasamy Sudhakar3,4,5,*, Amir Abdul Razak3

    Energy Engineering, Vol.121, No.9, pp. 2331-2361, 2024, DOI:10.32604/ee.2024.051576 - 19 August 2024

    Abstract The United Nations’ Sustainable Development Goals (SDGs) highlight the importance of affordable and clean energy sources. Solar energy is a perfect example, being both renewable and abundant. Its popularity shows no signs of slowing down, with solar photovoltaic (PV) panels being the primary technology for converting sunlight into electricity. Advancements are continuously being made to ensure cost-effectiveness, high-performing cells, extended lifespans, and minimal maintenance requirements. This study focuses on identifying suitable locations for implementing solar PV systems at the University Malaysia Pahang Al Sultan Abdullah (UMPSA), Pekan campus including buildings, water bodies, and forest areas.… More > Graphic Abstract

    Forestvoltaics, Floatovoltaics and Building Applied Photovoltaics (BAPV) Potential for a University Campus

  • Open Access

    ARTICLE

    Maximizing Solar Potential Using the Differential Grey Wolf Algorithm for PV System Optimization

    Ezhilmathi Nagarathinam1, Buvana Devaraju2, Karthiyayini Jayamoorthy3, Padmavathi Radhakrishnan4, Santhana Lakshmi ChandraMohan5, Vijayakumar Perumal6, Karthikeyan Balakrishnan7,*

    Energy Engineering, Vol.121, No.8, pp. 2129-2142, 2024, DOI:10.32604/ee.2024.052280 - 19 July 2024

    Abstract Maximum Power Point Tracking (MPPT) is crucial for maximizing the energy output of photovoltaic (PV) systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions. This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer (DGWO). It dynamically adjusts the parameters of the MPPT controller, specifically the duty cycle of the SEPIC converter, to efficiently track the Maximum Power Point (MPP). The proposed system aims to enhance the energy harvesting capability of solar PV More >

Displaying 1-10 on page 1 of 196. Per Page