Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (304)
  • Open Access

    ARTICLE

    Spatio-Temporal Graph Neural Networks with Elastic-Band Transform for Solar Radiation Prediction

    Guebin Choi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073985 - 29 January 2026

    Abstract This study proposes a novel forecasting framework that simultaneously captures the strong periodicity and irregular meteorological fluctuations inherent in solar radiation time series. Existing approaches typically define inter-regional correlations using either simple correlation coefficients or distance-based measures when applying spatio-temporal graph neural networks (STGNNs). However, such definitions are prone to generating spurious correlations due to the dominance of periodic structures. To address this limitation, we adopt the Elastic-Band Transform (EBT) to decompose solar radiation into periodic and amplitude-modulated components, which are then modeled independently with separate graph neural networks. The periodic component, characterized by strong More >

  • Open Access

    ARTICLE

    Experimental Study of Solar-Powered Underfloor Heating in a Defined Space

    Firas Mahmood Younis1,*, Omar Mohammad Hamdoon2, Ayad Younis Abdulla1

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073483 - 27 January 2026

    Abstract This paper presents an experimental analysis of a solar-assisted powered underfloor heating system, designed primarily to boost energy efficiency and achieve reliable desired steady-state temperature in buildings. We thoroughly tested the system’s thermal and operational features by subjecting it to three distinct scenarios that mimicked diverse solar irradiance and environmental conditions. Our findings reveal a strong correlation between variations in solar input and overall system performance. The Solar Fraction (SF), our key energy efficiency metric, varied significantly across the cases, ranging from 63.1% up to 88.7%. This high reliance on renewables resulted in a substantial… More >

  • Open Access

    ARTICLE

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

    Benali Touhami1, Bennaceur Said1, Atouani Toufik1, Lammari Khelifa2, Ouradj Boudjamaa2, Bounaama Fateh2, Belkacem Draoui2, Lyes Bennamoun3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073329 - 27 January 2026

    Abstract The aim of this study is to design, build, and evaluate an indirect forced convection solar dryer adapted to semi-arid climate, such as that of Béchar situated in the west south region of Algeria. The tested drying system consists of a flat-plate solar collector, an insulated two-chamber drying unit, and an Arduino-controlled device that ensures uniform temperature distribution and real-time monitoring using DHT22 sensors. Drying tests were conducted on locally grown beet slices at air temperatures of 45°C, 60°C, and 80°C, with a constant air velocity of 1.2 m/s and a mass flow rate of… More > Graphic Abstract

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

  • Open Access

    ARTICLE

    Solar Photovoltaic System as a Sustainable Solution for Electric Load Shortage in Baghdad: A Design and Economic Study

    Fadhil M. Oleiwi1, Jaber O. Dahloos2, Amer Resen Kalash3, Hasanain A. Abdul Wahhab3, Miqdam T. Chaichan1,4,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073313 - 27 January 2026

    Abstract In the present study, researchers examined a solar off-grid-connected photovoltaic system for a family house in the city of Baghdad. The design was created with the help of the “How to Design PV Program” and the “Renewable Energy Investment Calculator (REICAL)” software (Version 1.1). In Iraq, the national grid provides around 71% of the overall electricity demand, though this drops to nearly 50% during extremely hot and cold months, where the supply alternates between four hours on and four hours off. During the off periods, power is generated by local generators at high costs. To… More >

  • Open Access

    ARTICLE

    Heating the Future: Solar Hot Water Collectors for Energy-Efficient Homes in Sweden

    Mehran Karimi1, Hesamodin Heidarigoujani1, Mehdi Jahangiri1,*, Milad Torabi Anaraki2, Daryosh Mohamadi Janaki3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070190 - 27 January 2026

    Abstract The technical, economic, and environmental performance of solar hot-water (SWH) systems for Swedish residential apartments—where approximately 80% of household energy is devoted to space heating and sanitary hot-water production—was assessed. Two collector types, flat plate (FP) and evacuated tube (ET), were simulated in TSOL Pro 5.5 for five major cities (Stockholm, Göteborg, Malmö, Uppsala, Linköping). Climatic data and cold-water temperatures were sourced from Meteonorm 7.1, and economic parameters were derived from recent national statistics and literature. All calculations explicitly accounted for heat losses from collectors, storage tanks, and internal and external piping systems, and established… More >

  • Open Access

    ARTICLE

    Engineering and Tuning of Absorber Layer Properties for High-Efficiency SnS-Based Solar Cells: A SCAPS-1D Simulation Study

    Abla Guechi1, Djohra Dekhil2, Abdelhak Nouri2,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076586 - 26 January 2026

    Abstract This work uses numerical modeling in SCAPS-1D to examine the efficiency analysis of a solar cell based on SnS. The power conversion efficiency (PCE) is limited to 24.5% because of incomplete photon absorption in the absorber layer (SnS) and carrier recombination. To increase the absorption window, facilitate charge mobility, and suppress bulk recombination at the rear contact, the absorbent film was divided up into three sublayers with graded band gaps of 1.1 eV, 1.2 eV, and 1.3 eV. Furthermore, the sublayers’ linear gradient doping improved charge collection while simultaneously lowering recombination at the interface. A… More >

  • Open Access

    ARTICLE

    Impact of Window Layers on Selenium Distribution and Photovoltaic Performance in CdSexTe1−x/CdTe Solar Cells

    Junyan Tian1, Qingyuan Zhang1, Lili Wu1,2,*, Xia Hao1,2, Guanggen Zeng1, Wenwu Wang1, Jingquan Zhang1,2

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.076362 - 26 January 2026

    Abstract The incorporation of the Se element in CdTe solar cells is critical, while the low bandgap CdSexTe1−x, formed by the interdiffusion of CdTe and CdSe during device preparation, can promote the carrier lifetime. Different window layers formed by CdSe w/o MZO or CdS have different Se distributions. This paper systematically evaluates the influence of four types of window layers (CdSe, CdS/CdSe, MZO/CdSe and MZO/CdS/CdSe) on the performance of CdTe solar cells, and focuses on the correlation between the window layers and the Se distribution characteristic, carrier recombination mechanism, and device efficiency. The results show that CdSe… More >

  • Open Access

    ARTICLE

    Synthesis and Photoresponse of Quinary Zinc-Blende Cu3FeInSnS6 Nanoplates

    Dehui Li1,#, Yiming Guo1,#, Tao He1, Binbin Zhang1, Haixia Yu2,*, Lingkun Meng1,*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.075922 - 26 January 2026

    Abstract Quinary Cu3FeInSnS6 (CFITS) nanoplates were synthesized through a synergistic dual-cation substitution strategy using a hot-injection method, where oleylamine and 1-dodecanethiol served as coordinating ligands to guide two-dimensional growth. The nanocrystals were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and absorption spectroscopy. Structural analysis confirms that the CFITS nanoplates crystallize in a phase-pure cubic zinc-blende structure (space group F-43 m) without detectable secondary phases. Optical measurements reveal that the nanoplates exhibit broad and intense visible-light absorption with a direct bandgap of 1.51 ± 0.03 eV, suitable for photovoltaic applications. Under standard AM 1.5 G… More >

  • Open Access

    ARTICLE

    Advanced Meta-Heuristic Optimization for Accurate Photovoltaic Model Parameterization: A High-Accuracy Estimation Using Spider Wasp Optimization

    Sarah M. Alhammad1, Diaa Salama AbdElminaam2,3,*, Asmaa Rizk Ibrahim4, Ahmed Taha2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069263 - 12 January 2026

    Abstract Accurate parameter extraction of photovoltaic (PV) models plays a critical role in enabling precise performance prediction, optimal system sizing, and effective operational control under diverse environmental conditions. While a wide range of metaheuristic optimisation techniques have been applied to this problem, many existing methods are hindered by slow convergence rates, susceptibility to premature stagnation, and reduced accuracy when applied to complex multi-diode PV configurations. These limitations can lead to suboptimal modelling, reducing the efficiency of PV system design and operation. In this work, we propose an enhanced hybrid optimisation approach, the modified Spider Wasp Optimization… More >

  • Open Access

    ARTICLE

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of Marrubium vulgare Leaves

    Mohammed Benamara1,2, Boumediene Touati3, Said Bennaceur4, Bendjillali Ridha Ilyas5,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072641 - 27 December 2025

    Abstract This study explores the thin-layer convective solar drying of Marrubium vulgare L. leaves under conditions typical of sun-rich semi-arid climates. Drying experiments were conducted at three inlet-air temperatures (40°C, 50°C, 60°C) and two air velocities (1.5 and 2.5 m·s−1) using an indirect solar dryer with auxiliary temperature control. Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient (r), root-mean-square error (RMSE), and Akaike information criterion (AIC). A complementary heat-transfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance, and an… More > Graphic Abstract

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of <i>Marrubium vulgare</i> Leaves

Displaying 1-10 on page 1 of 304. Per Page