Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Novel Hybrid XGBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests

    Ehsan Momeni1, Biao He2, Yasin Abdi3,*, Danial Jahed Armaghani4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2527-2550, 2023, DOI:10.32604/cmes.2023.026531 - 09 March 2023

    Abstract When building geotechnical constructions like retaining walls and dams is of interest, one of the most important factors to consider is the soil’s shear strength parameters. This study makes an effort to propose a novel predictive model of shear strength. The study implements an extreme gradient boosting (XGBoost) technique coupled with a powerful optimization algorithm, the salp swarm algorithm (SSA), to predict the shear strength of various soils. To do this, a database consisting of 152 sets of data is prepared where the shear strength (τ) of the soil is considered as the model output… More >

Displaying 1-10 on page 1 of 1. Per Page