Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Seasonal Changes in Soil Respiration with An Elevation Gradient in Abies nephrolepis (Trautv.) Maxim. Forests in North China

    Zhijie Tian1,*, Xueying Jia2, Tingting Liu1, Eryan Ma1, Lamei Xue1, Yanqiu Hu1, Qingrong Zheng1

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1543-1556, 2022, DOI:10.32604/phyton.2022.020329 - 14 March 2022

    Abstract Soil respiration (Rs) plays an important role in regulating carbon cycle of terrestrial ecosystems and presents temporal and spatial heterogeneity. Abies nephrolepis is a tree species that prefers the cold and wet environment and is mainly distributed in Northeast Asia and East Asia. The Rs variations of Abies nephrolepis forests communities are generally environmental-sensitive and can effectively reflect the adaptive responses of forest ecosystems to climate change. In this study, the growing-seasonal variations of Rs, soil temperature, soil water content and soil properties of Abies nephrolepis forests were analyzed along an altitude gradient (2000, 2100, 2200 and 2300… More >

  • Open Access

    ARTICLE

    Differential Responses of Soil Organic Carbon Fractions and Carbon Turnover Related Enzyme Activities to Wheat Straw Incorporation in Subtropical China

    Wei Dai1, Kaikai Fang1, Hui Gao1, Jun Wang1, Petri Penttinen2, Zhimin Sha1,*, Linkui Cao1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.1, pp. 169-183, 2022, DOI:10.32604/phyton.2022.016407 - 16 August 2021

    Abstract Soil organic carbon (SOC) fractions and C turnover related enzyme activities are essential for nutrient cycling. This is because they are regarded as important indicators of soil fertility and quality. We measured the effects of wheat straw incorporation on SOC fractions and C turnover related enzyme activities in a paddy field in subtropical China. Soil samples were collected from 0–10 cm and 10–20 cm depths after rice harvesting. The total SOC concentrations were higher in the high rate of wheat straw incorporation treatment (NPKS2) than in the not fertilized control (CK) (P <0.05). The concentrations of labile C… More >

  • Open Access

    ARTICLE

    The Enhancement of Soil Fertility, Dry Matter Transport and Accumulation, Nitrogen Uptake and Yield in Rice via Green Manuring

    Tianyuan Li1,#, Saif Ullah1,#, He Liang1, Izhar Ali1, Quan Zhao1, Anas Iqbal1, Shanqing Wei1, Tariq Shah2, Yuqiong Luo1, Ligeng Jiang1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.1, pp. 223-243, 2021, DOI:10.32604/phyton.2020.012065 - 20 November 2020

    Abstract Readily available chemical fertilizers have resulted in a decline in the use of organic manure (e.g., green manures), a traditionally sustainable source of nutrients. Based on this, we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen (N) productivity in a double rice cropping system in 2017. In particular, treatment combinations were as follows: winter fallow rice-rice (WF-R-R), milk vetch rice-rice (MV-R-R), oil-seed rape rice-rice (R-R-R) and potato crop rice-rice (P-R-R). Results revealed that green manure significantly (p ≤ 0.05) improved the soil chemical properties and… More >

  • Open Access

    ARTICLE

    Changes in soil organic carbon in the upper Heihe river basin, China

    Qin YY1,2, F Qi1, NM Holden3, JJ Cao4

    Phyton-International Journal of Experimental Botany, Vol.85, pp. 149-154, 2016, DOI:10.32604/phyton.2016.85.149

    Abstract The Heihe River Basin is a globally significant carbon pool, but its soil organic carbon dynamics is poorly understood. Soil samples taken between 2500 m and 4100 m revealed that the majority (>75%) of soil organic carbon was from 0-40 cm. It showed a negative relationship with pH and soil bulk density, and a positive relationship with altitude and soil water content, respectively. From 2005 to 2011, soil carbon content in the upper catchment decreased from 93 g/kg to 53 g/kg. These results suggest that policies should aim to reduce carbon loss by transferring it More >

Displaying 1-10 on page 1 of 4. Per Page