Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Comparative Investigation of the Biodegradation Behaviour of Linseed Oil-Based Cross-Linked Composites Filled with Industrial Waste Materials in Two Different Soils

    Eglė Malachovskienė1,*, Danguolė Bridžiuvienė1, Jolita Ostrauskaitė2, Justina Vaičekauskaitė2, Gailė Žalūdienė3

    Journal of Renewable Materials, Vol.11, No.3, pp. 1255-1269, 2023, DOI:10.32604/jrm.2022.023574 - 31 October 2022

    Abstract The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers (pine needles, pine bark, grain mill waste, rapeseed cake) and a control sample without filler was studied during 180 days of exposure to two types of forest soil: deciduous and coniferous. The weight loss, morphological, and structural changes of polymer composites were noticed after 180 days of the soil burial test. The greatest weight loss of all tested samples was observed in coniferous forest soil (41.8%–63.2%), while in deciduous forest soil, it ranged between 37.7% and 42.3%. The most significant… More >

  • Open Access

    ARTICLE

    Mineralization of Poly(lactic acid) (PLA), Poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments

    Sudhakar Muniyasamy1,2, Osei Ofosu1,2, Maya Jacob John1,2, Rajesh D. Anandjiwala1,2*

    Journal of Renewable Materials, Vol.4, No.2, pp. 133-145, 2016, DOI:10.7569/JRM.2016.634104

    Abstract The present study investigates the mineralization of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-covalerate) (PHBV), and PLA/PHBV blend in compost and soil burial environments. The mineralization was assayed on the basis of carbon dioxide (CO2) release from the test materials incubated in compost and soil for a period of 200 days. The degradation was followed by means of fragmentation, thermogravimetric (TGA), FTIR spectroscopy and scanning electron microscopy (SEM) analyses. The results showed that PLA, PHBV and blend of PLA/PHBV achieved almost 90% biodegradation under composting conditions, while PHBV, PLA/PHBV blend and PLA respectively achieved only 35%, 32% More >

  • Open Access

    ARTICLE

    Degradation Behaviour of Natural Fibre Reinforced Starch-Based Composites under Different Environmental Conditions

    Rosana Moriana1,2,*, Emma Strömberg1, Amparo Ribes2, Sigbritt Karlsson1,*

    Journal of Renewable Materials, Vol.2, No.2, pp. 145-156, 2014, DOI:10.7569/JRM.2014.634103

    Abstract The purpose of this work was to study the effect of hydrothermal, biological and photo degradation on natural fi bres reinforced biodegradable starch-based (Mater-BiKE) composites to characterize the structural changes occurring under exposure to different environments. The composites water-uptake rate was hindered by the interfacial interactions between matrix and fi bres. Thermal, structural and morphological analysis provided useful information about the irreversible changes in the properties of the composites caused by degradation in soil and photodegradation, and their synergetic effects. The effects due to the photo-oxidation and degradation in soil on the composites depended on… More >

Displaying 1-10 on page 1 of 3. Per Page