Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform

    Wenbo Li, Qi Wang*, Shang Gao

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 921-938, 2023, DOI:10.32604/iasc.2023.038257 - 29 April 2023

    Abstract Infrared target detection models are more required than ever before to be deployed on embedded platforms, which requires models with less memory consumption and better real-time performance while considering accuracy. To address the above challenges, we propose a modified You Only Look Once (YOLO) algorithm PF-YOLOv4-Tiny. The algorithm incorporates spatial pyramidal pooling (SPP) and squeeze-and-excitation (SE) visual attention modules to enhance the target localization capability. The PANet-based-feature pyramid networks (P-FPN) are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy. To lighten the network, the standard convolutions other than the backbone More >

Displaying 1-10 on page 1 of 1. Per Page