Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Soft Tissue Acupuncture Model Based on Mass-Spring Force Net

    Xiaorui Zhang1,2,*, Tong Xu1, Wei Sun2, Jiali Duan1, Sunil Kumar Jha3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 727-745, 2021, DOI:10.32604/cmc.2021.018182 - 04 June 2021

    Abstract In the simulation of acupuncture manipulation, it is necessary to accurately capture the information of acupuncture points and particles around them. Therefore, a soft tissue modeling method that can accurately track model particles is needed. In this paper, a soft tissue acupuncture model based on the mass-spring force net is designed. MSM is used as the auxiliary model and the SHF model is combined. SHF is used to establish a three-layer soft tissue model of skin, fat, and muscle, and a layer of the MSM based force network is covered on the surface of soft More >

  • Open Access

    ARTICLE

    Soft Tissue Deformation Model Based on Marquardt Algorithm and Enrichment Function

    Xiaorui Zhang1,2,*, Xuefeng Yu1, Wei Sun2, Aiguo Song3

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1131-1147, 2020, DOI:10.32604/cmes.2020.09735 - 21 August 2020

    Abstract In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model, this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function. The model is based on the element-free Galerkin method, in which Kelvin viscoelastic model and adjustment function are integrated. Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation, and the enrichment function is applied to deal with the discontinuity in the meshless method. To verify the validity of the More >

Displaying 1-10 on page 1 of 2. Per Page